Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{5-x}{x-2}=-\frac{x-5}{x-2}=-\frac{x-2}{x-2}-\frac{3}{x-2}=-1-\frac{3}{x-2}\)
M nhỏ nhất \(\Leftrightarrow\frac{3}{x-2}\)đạt giá trị lớn nhất\(\Leftrightarrow x\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x=1\)
Vậy GTNN của M là -4 khi và chỉ khi x = 1
Cho làm lại :
\(M=\frac{5-x}{x-2}=\frac{-\left(x-5\right)}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
M nhỏ nhất \(\Leftrightarrow\frac{3}{x-2}\)đạt GTNN\(\Leftrightarrow x-2\)đạt giá trị âm lớn nhất
\(\Leftrightarrow x-2=-1\Leftrightarrow x=1\)
Vậy \(M_{min}=-4\Leftrightarrow x=1\)
\(M=\frac{2022x-2020}{3x+2}=\frac{2022x+1348-3368}{3x+2}\)
\(=674-\frac{336}{3x+2}\)
Bạn lập bảng là xog.
TL:
\(M=\frac{2022x-2020}{3x-2}=\frac{2022x+1348-3368}{3x-2}\)
\(=674-\frac{336}{3x+2}\)
_HT_
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
A = \(\frac{4x-11}{x-3}\)= \(\frac{4\left(x-3\right)+1}{x-3}\)= 4 + \(\frac{1}{x-3}\)
Để A có giá trị nhỏ nhất thì \(\frac{1}{x-3}\)có giá trị nhỏ nhất
Để \(\frac{1}{x-3}\)có giá trị nhỏ nhất thì x-3 có giá trị lớn nhất
ta có:\(A=\frac{4x-11}{x-3}=\frac{4\left(x-3\right)+1}{x-3}=4+\frac{1}{x-3}\)
để A có giá trị nhỏ nhất thì \(\frac{1}{x-3}\)có giá trị nhỏ nhất
\(\Leftrightarrow\)\(x-3\)có giá trị lớn nhất
\(M=\frac{5-x}{x-2}=\frac{-x+2+3}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
Để M có GTNN
\(\Leftrightarrow\)x-2 có GTLN và x-2<0
\(\Rightarrow x-2=-1\)
\(\Rightarrow x=1\)
Vậy, M có GTNN là -4 khi x=1
CHÚC BẠN HỌC TỐT!!! :))
15/10