Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
a) Để giá trị phân thức dc xác định thì x2 -1 # 0 <=> x2 # 1 <=> x # 1 và x # -1 ( giải thích: vì muốn phân thức xác định thì mẫu thức phải khác 0)
(mình ko biết ghi dấu "khác" trong toán, nên ghi đỡ dấu thăng nha, sr bạn)
b) Ta có: x2 + 2x +1 / x2 -1
= (x + 1)2 / (x+1).(x-1)
= (x+1).(x+1) / (x+1).(x-1)
= x+1 / x-1
Vậy phân thức rút gọn của phân thức đã cho là x+1/ x-1
de \(\frac{x^2+2x+1}{x^2-1}\)được xác định => x2-1 khác 0 => x khác +-1
\(\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x+1\right).\left(x-1\right)}=\frac{x+1}{x-1}\)
Dề sai ko bạn
Chỉ cần ý b thôi