K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

a, \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)

\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b,Ta có  \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{2}+1\)

Vậy \(B=\sqrt{2}+1-1=\sqrt{2}\)

a) Ta có: \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

\(=\sqrt{x}-1\)

b) Thay \(x=3+2\sqrt{2}\) vào B, ta được:

\(B=\sqrt{2}+1-1=\sqrt{2}\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

5 tháng 1 2022

\(a,B=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\\ B=x-\sqrt{x}+1-\sqrt{x}=\left(\sqrt{x}-1\right)^2\)

Mà \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow B=\left(\sqrt{3}-1-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)

\(b,P=AB=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\\ P=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}=\sqrt{x}-1\\ c,Q=\sqrt{x}+\dfrac{1}{P}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}\\ Q=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+1\ge2\sqrt{1}+1=3\\ Q_{min}=3\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=1\\1-\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\left(x>1\Leftrightarrow\right)x=4\left(tm\right)\)

a: \(B=\left(\sqrt{x}-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)

b: \(A=\dfrac{2x+1-x+\sqrt{x}}{x\sqrt{x}-1}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

27 tháng 10 2017

Bài 2: a) Ta có: Q=\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) -\(\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\) =\(\dfrac{1}{\sqrt{x}-1}\) -\(\left(\dfrac{x+2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\left(\dfrac{x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\dfrac{2x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) =

27 tháng 10 2017

Còn lại bn tính tiếp

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

a) ĐK: $x>0; x\neq 4$

Khi $x=36$ thì $\sqrt{x}=6$

$A=\frac{6+4}{6+2.36}=\frac{5}{39}$

b) \(B=\frac{\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{2(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{-(\sqrt{x}+4)}{(\sqrt{x}-2)(\sqrt{x}+2)}\)

\(\Rightarrow P=B:A=\frac{-(\sqrt{x}+4)}{(\sqrt{x}-2)(\sqrt{x}+2)}:\frac{\sqrt{x}+4}{\sqrt{x}+2x}=\frac{\sqrt{x}+2x}{(2-\sqrt{x})(\sqrt{x}+2)}\)

\(A=\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\)

\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}}{2x-1}-1\)

\(=\dfrac{2x\sqrt{2}+2\sqrt{2x}-1+2x-2x+1}{2x-1}=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}\)

\(B=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=1+\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{2x-1}\)

\(=1+\dfrac{-2\sqrt{x}-1-2x}{2x-1}\)

\(=\dfrac{2x-1-2\sqrt{x}-1-2x}{2x-1}=\dfrac{-2-2\sqrt{x}}{2x-1}\)

\(P=A:B=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}:\dfrac{-2\sqrt{x}-2}{2x-1}\)

\(=\dfrac{2\sqrt{x}\left(x+\sqrt{2}\right)}{2x-1}\cdot\dfrac{2x-1}{-2\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}\left(x+\sqrt{2}\right)}{\sqrt{x}+1}\)

b: Thay \(\sqrt{x}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\) vào P, ta được:

\(P=\left[-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\left(\dfrac{3+2\sqrt{2}}{2}+\sqrt{2}\right)\right]:\left[\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}+1\right]\)

\(=\left[\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\dfrac{3+4\sqrt{2}}{2}\right]:\left[\dfrac{2+\sqrt{2}+2}{2}\right]\)

\(=\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{4}\cdot\dfrac{2}{4+\sqrt{2}}\)

\(=\dfrac{-\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{2\cdot\left(2\sqrt{2}+1\right)}=\dfrac{-\left(4\sqrt{2}+3\right)}{3\cdot\left(3+\sqrt{2}\right)}\)

 

19 tháng 3 2021

em làm luôn 

\(P=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{x-1}\)

b) thì em chưa làm đc :((

19 tháng 3 2021

b, \(x=24-16\sqrt{2}=24-2.8.\sqrt{2}=24-8\sqrt{8}\)

\(=24-2.4\sqrt{8}=4^2-2.4\sqrt{8}+\left(\sqrt{8}\right)^2=\left(4-\sqrt{8}\right)^2\)

*, làm tiếp bước Q làm : \(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(4-\sqrt{8}\right)^2}=\left|4-\sqrt{8}\right|=4-\sqrt{8}\)( vì \(4-\sqrt{8}>0\))

hay \(\frac{1}{4-\sqrt{8}-1}=\frac{1}{3-\sqrt{8}}=3+\sqrt{8}\)

Vậy với \(x=24-16\sqrt{2}\)thì \(P=3+\sqrt{8}\)