Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)
Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên
=> 7 ⋮ x - 3
=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -4 |
So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn
Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên
(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.
( ác ) là từ ( các )
(gia strij) là từ ( giá trị )
a)Đk:\(x^2-y^2\ne0\Rightarrow\left(x-y\right)\left(x+y\right)\ne0\)\(\Rightarrow\left\{\begin{matrix}x\ne y\\x\ne-y\end{matrix}\right.\)
b)\(A=\frac{x^2+2x-y^2-2y}{x^2-y^2}=\frac{x^2+xy+2x-xy-y^2-2y}{x^2-y^2}\)
\(\frac{x\left(x+y+2\right)-y\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x+y+2}{x+y}\)
c)Khi \(\left\{\begin{matrix}x=5\\y=6\end{matrix}\right.\) thay vào A ta có:
\(A=\frac{x+y+2}{x+y}=\frac{5+6+2}{5+6}=\frac{13}{11}\)
cacs bn làm ra giấy rồi chụp cũng ddcj,lm ơn đó , tối nay mk đi học thêm rồi
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
a) ĐKXĐ là \(x^2-y^2\)khác 0
b) A=\(\frac{x^2+2x-y^2-2y}{x^2-y^2}=\frac{\left(x^2-y^2\right)+2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{\left(x+y\right)\left(x-y\right)+2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{\left(x-2\right)\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x+y+2}{x+y}=1+\frac{2}{x+y}\)
c) Thay x=5,y=6 vào biểu thức A ta được
A=\(2+\frac{2}{5-6}=2+\frac{2}{-1}=2-2=0\)
Vậy A=0
DKXD x và Y khác 0
B) rút gọn x^2 và y^2 ta dc \(\frac{2x-2y}{1}\)
C. \(2.5-2.6=10-12=-2\)