Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\left(\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-4x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
b: Thay x=1/2 vào M, ta được:
\(M=\left(\dfrac{1}{2}+1\right):\left(2\cdot\dfrac{1}{2}\right)=\dfrac{3}{2}\)
\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\left(\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x\left(x^2-4x+4+4x\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x+1}{2x}\)
( x2−2x / 2x2+8 − 2x2 / 8−4x+2x2−x3 ).(1− 1/x − 2/x2 )
=[ x2−2x / 2(x2+4) − 2x2 / 2(x2+4)−x(x2+4) ]. x2−x−2 / x2
=[x2−2x / 2(x2+4) − 2x2 / (2−x)(x2+3)] . x2−x−2 / x2
=(x2−2x)(2−x)−4x2 / 2(2−x)(x2+4) . x2+x−2x−2 / x2
= −x(x2+4) / 2(2−x)(x2+4). (x+1)(x−2) / x2
=x+1 / 2x
\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)
ĐKXĐ: \(x\ne\left\{\dfrac{-3}{2};\dfrac{1}{2};\dfrac{7}{4};\dfrac{5}{2};4;\right\}\)
\(P=\left(\dfrac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(2x-5\right)\left(x-4\right)}\right)\div\dfrac{\left(7-4x\right)\left(2x+3\right)}{\left(2x-1\right)\left(2x+3\right)}+1\)
\(P=\left(\dfrac{2x-3-3\left(2x-5\right)-2\left(2x-1\right)}{\left(2x-1\right)\left(2x-5\right)}\right)\dfrac{2x-1}{7-4x}+1\)
\(P=\dfrac{-8x+14}{\left(2x-5\right)\left(7-4x\right)}+1=\dfrac{2}{2x-5}+1\)
b/ \(\left|x\right|=\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Với \(x=\dfrac{1}{2}\Rightarrow P=\dfrac{2}{2.\dfrac{1}{2}-5}+1=\dfrac{1}{2}\)
Với \(x=\dfrac{-1}{2}\Rightarrow P=\dfrac{2}{2.\left(\dfrac{-1}{2}\right)-5}+1=\dfrac{2}{3}\)
c/ Để P nguyên \(\Rightarrow\dfrac{2}{2x-5}\) nguyên \(\Rightarrow2⋮\left(2x-5\right)\Rightarrow2x-5=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(2x-5=-2\Rightarrow x=\dfrac{3}{2}\left(l\right)\)
\(2x-5=-1\Rightarrow x=2\)
\(2x-5=1\Rightarrow x=3\)
\(2x-5=2\Rightarrow x=\dfrac{7}{2}\left(l\right)\)
Vậy \(x=\left\{2;3\right\}\) thì P nguyên
d/ \(P>0\Rightarrow\dfrac{2}{2x-5}+1>0\Rightarrow\dfrac{2x-3}{2x-5}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3>0\\2x-5>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3< 0\\2x-5< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< \dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\x>\dfrac{5}{2}\end{matrix}\right.\)
rút gọn à banj
đúng rồi á