K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

a) A là phân số khi và chỉ khi mẫu 2n - 1 khác 0 
Nhưng do n thuộc Z nên 2n - 1 luôn khác 0 với mọi n 
Vậy A luôn là phân số với n thuộc Z 

17 tháng 4 2019

\(A=\frac{2n-1}{2n+1}=\frac{2n+1-2}{2n+1}=1-\frac{2}{2n+1}\)

Để A có GTLN \(\Leftrightarrow\frac{2}{2n+1}\) có GTNN

                        \(\Leftrightarrow2n+1\) là số nguyên âm nhỏ nhất nhất     

                        n=-..... 

                              

                            

18 tháng 3 2016

a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3

Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 4n - 6 chia hết cho 2n + 3

=> -5 chia hết cho 2n + 3

=> 2n + 3 thuộc {-1; 1; -5; 5}

=> 2n thuộc {-4; -2; -8; 2}

=> n thuộc {-2; -1; -4; 1}

b, Ta có:

\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)

=> 2n + 3 = 1

=> 2n = -2

=> n = -1

+ Lớn nhất xét tương tự

15 tháng 3 2016

Ai k cho mình tròn 60 với

15 tháng 3 2016

k cho minh vs 

NM
4 tháng 3 2022

ta có A thuộc Z nên 

\(2A=\frac{6n-2}{2n-1}=\frac{3\left(2n-1\right)+1}{2n-1}=3+\frac{1}{2n-1}\) nguyên khi 2n-1 là ước của 1 

hay ta có : \(\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\text{ hay }\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

4 tháng 3 2022

\(A=\dfrac{6n-2}{2n-1}=\dfrac{3\left(2n-1\right)+1}{2n-1}=3+\dfrac{1}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n-11-1
n1loại

 

4 tháng 8 2021

a, bạn sửa lại đề nhé 

b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n + 31-1
2n-2-4
n-1-2 

\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)

\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 31-17-7
n4210-4
14 tháng 2 2019

a,Với \(n\in Z\)ta có \(2n+1\in Z;n-3\in Z\)

Do đó để \(A=\frac{2n+1}{n-3}\)là phân số thì \(n-3\ne0\Rightarrow n\ne3\)

Vậy với n thuộc Z và n khác 3 thì A là phân số

b,\(A=\frac{2n+1}{n-3}=\frac{2\left(n-3\right)+1+6}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\)

Để A nguyên 

\(\Rightarrow7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow n\in\left\{4;2;10;-4\right\}\)

Vậy..........................

6 tháng 8 2020

Bg

a) Ta có: B = \(\frac{4n+1}{2n-3}\)            (n thuộc Z)

Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)

=> 4n + 1 ⋮ 2n - 3

=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3

=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3

=> 4n + 1 - (4n - 6) chia hết cho 2n - 3

=> 4n + 1 - 4n + 6 chia hết cho 2n - 3

=> 4n - 4n + 1 + 6 chia hết cho 2n - 3

=> 7 chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(7)

Ư(7) = {1; 7; -1; -7}

Lập bảng:

2n - 3 =17-1-7
n =251-2
(loại vì không phải scp) (loại)(loại) 

Vậy n = {2; -2} thì B là số chính phương

b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3  (ta chỉ cần loại những số n trong bảng)

=> n không thuộc {2; 5; 1; -2}

c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0

=> 2n - 3 = 1

=> 2n = 1 + 3

=> 2n = 4

=> n = 4 : 2

=> n = 2

Vậy n = 2 thì B đạt GTLN

b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d

                                                                                                        => 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d

=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)

c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).

Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.

2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm. 

Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất. 

                                                                                                                      => 2n - 3 đặt giá trị dương nhỏ nhất .