Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ \(\frac{x}{xy+x+1}\)+\(\frac{y}{yz+y+1}\)+\(\frac{z}{xz+z+1}\)
=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)
=\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xy+x+1}\)+\(\frac{1}{xy+x+1}\)(vì xyz=1)
=\(\frac{x+xy+1}{xy+x+1}\)
= 1
\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)
\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)
\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+1+x}\)
\(=\frac{xy+x+1}{xy+x+1}=1\)
\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)
\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+1}+\frac{1}{xy+1+x}\)
\(\frac{x+xy+1}{xy+x+1}=1\)
Vì xyz = 1 nên x = y = z = 1
=> \(A=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Do xyz=1
\(\Rightarrow\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{zx+z+1}=\frac{z}{xyz+xz+z}+\frac{xz}{xyz^2+xyz+xz}+\frac{1}{xyz+zx+z}\)
\(=\frac{z}{1+zx+z}+\frac{xz}{1+z+xz}+\frac{1}{1+xz+z}=1\)
Ta có: \(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(A=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)
\(A=\frac{xz}{1+xz+z}+\frac{xyz}{z+1+xz}+\frac{z}{xz+z+1}\)
\(A=\frac{xyz+xz+1}{xyz+xz+1}\)
\(A=1\)
Vậy \(A=1\)
Áp dụng tc của dãy tỉ số = nhau ta được :
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)
Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)
\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy ...
bạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{xyz+xz+z}+\frac{yxz}{yz.xz+xyz+xz}+\frac{z}{zx+z+1}\) Thay xyz=1 vào ta được:
\(A=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{zx+z+1}\)
\(A=\frac{zx+z+1}{zx+z+1}=1\)
=> A=1
\(P=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}.\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x\left(1+y+yz\right)}+\frac{xy}{xy\left(1+z+xz\right)}\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+xyz.x}\)
\(P=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\left(xyz=1\right)\)
\(P=\frac{1+x+xy}{1+x+xy}=1\)
Vậy P=1
Ta có:\(\frac{x}{xy+x+1}=\frac{y}{yz+y+1}=\frac{z}{xz+x+1}\)=\(\frac{xz}{xyz+xz+z}=\frac{yxz}{xyz^2+yxz+xz}=\frac{z}{xz+z+1}\)
=\(\frac{xz}{1+xz+z}=\frac{xyz}{z+1+xz}=\frac{z}{xz+z+1}\)
=\(\frac{xyz+xz+1}{xyz+xz+1}\)=1
Đề bn ghi sai nha~~