K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

\(\Leftrightarrow2x^2+3x-2-2\le2x^2+2x-3\Leftrightarrow x+1\le0\Leftrightarrow x\le1\)

11 tháng 6 2021

a, \(\frac{2\left(2-3x\right)}{5}< \frac{4-2x}{3}\Leftrightarrow\frac{4-6x}{5}-\frac{4-2x}{3}< 0\)

\(\Leftrightarrow\frac{12-18x-20+10x}{15}< 0\Leftrightarrow-8x-8< 0\Leftrightarrow x>-1\)vì 15 > 0 

-/-/-(----|------> 

    -1    0                           

Vậy tập ngiệm của bft là S = { x | x > -1 }

b, \(x\left(9x+1\right)+1\le\left(1-3x\right)^2\Leftrightarrow9x^2+x+1\le1-6x+9x^2\)

\(\Leftrightarrow7x\le0\Leftrightarrow x\le0\)

-------]--/-/-/-/-->

       0

Vậy tập nghiệm của bft là S = { x | x =< 0 } 

10 tháng 6 2021

\(\frac{2\cdot\left(2-3x\right)}{5}< \frac{4-2x}{3}\)   

\(\frac{4-6x}{5}< \frac{4-2x}{3}\)   

\(\left(4-6x\right)\cdot3< \left(4-2x\right)\cdot5\)   

\(12-18x< 20-10x\)   

\(10x-18x< 20-12\)   

\(-8x< 8\)   

\(x>-1\)   

\(x\cdot\left(9x+1\right)+1\le\left(1-3x\right)^2\)   

\(9x^2+x+1\le9x^2-6x+1\)   

\(x\le-6x\)   

\(x+6x\le0\)   

\(7x\le0\)   

\(x\le0\)

29 tháng 11 2016

Mình có ý tưởng vầy nè. Bạn phát triên nó xe sao

Điều kiện \(-1\le x\le1\)

Đặt \(\hept{\begin{cases}!x!=a\left(0\le a\le1\right)\\\sqrt{1-x^2}=b\left(0\le b\le1\right)\end{cases}\Rightarrow a^2+b^2=1}\)

\(BPT\Leftrightarrow2ab+\left(1-k\right)\left(a+b\right)+2-k\le0\)

\(\Leftrightarrow k\ge\frac{2ab+a+b+2}{a+b+1}\)

Vậy giờ bạn làm bài khác nè

Tìm GTNN của \(\frac{2ab+a+b+2}{a+b+1}\)

Với \(\hept{\begin{cases}\left(0\le a\le1\right)\\\left(0\le b\le1\right)\\a^2+b^2=1\end{cases}}\)

29 tháng 11 2016

Ý tưởng của alibaba nguyễn gần đúng như ý tưởng của cô. 
Nhưng thay vì đưa về hệ, cô đặt \(\left|x\right|+\sqrt{1-x^2}=t\) , khi đó \(1\le t\le\sqrt{2}\)
Sau đó rút k theo t ta được \(k\ge\frac{t^2+t+1}{t+1}=t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
Khi đó giá trị nhỏ nhất mà k cần đạt chính là GTLN của \(t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).

26 tháng 10 2020

a) \(\sqrt{5x}=\sqrt{35}\)

ĐK : x ≥ 0

Bình phương hai vế

pt ⇔ 5x = 35 ⇔ x = 7 ( tm )

b) \(\sqrt{36\left(x-5\right)}=18\)

ĐK : x ≥ 5

Bình phương hai vế

pt ⇔ 36( x - 5 ) = 324

    ⇔ x - 5 = 9

    ⇔ x = 14 ( tm )

c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)

⇔ \(\sqrt{\left(4-8x\right)^2}=20\)

⇔ \(\left|4-8x\right|=20\)

⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)

⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

d) \(\sqrt{3-2x}\le\sqrt{5}\)

ĐK : x ≤ 3/2

Bình phương hai vế

bpt ⇔ 3 - 2x ≤ 5

⇔ -2x ≤ 2

⇔ x ≥ -1

Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2

26 tháng 10 2020

\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)

\(\Leftrightarrow5x=35\)

\(\Leftrightarrow x=7\left(tm\right)\)

vậy...

b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)

\(\Leftrightarrow6\sqrt{x-5}=18\)

\(\Leftrightarrow\sqrt{x-5}=3\)

\(\Leftrightarrow x-5=9\)

\(\Leftrightarrow x=14\left(tm\right)\)

vậy...

c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

vậy....

\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)

\(\Leftrightarrow3-2x< 25\)

\(\Leftrightarrow-2x< 22\)

\(\Leftrightarrow x>-11\)

\(\Rightarrow-11< x< 1.5\)

vạy.

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)