\(0\le a\le b\le c\le1\). CMR: \(\dfrac{a}{bc+1}+\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Vào đây đi:

https://hoc24.vn/hoi-dap/question/32718.html

13 tháng 3 2017

t vào r`, không hiểu...

3 tháng 2 2018

muộn rồi để lúc khác tôi làm cho

4 tháng 2 2018

Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)

Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)

cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)

\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)

Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)

chứng minh tương tự suy ra đpcm

24 tháng 10 2019

P/s: Bạn nào đang cần thì tham khảo bài này nhé, cô mình chữa rồi.

Bổ sung ĐK: \(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)

Có: \(0\le a\le b\le1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\\ \Rightarrow1-b-a+ab\ge0\\ \Rightarrow ab+1\ge a+b\\ \Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(\text{vì }c\ge0\right)\)

CMTT ta được \(\frac{a}{bc+1}\le\frac{a}{b+c}\\ \frac{b}{ac+1}\le\frac{b}{a+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a+a}{b+c+a}+\frac{b+b}{a+c+b}+\frac{c+c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)

4 tháng 3 2018

Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 7 - Học toán với OnlineMath

22 tháng 1 2017

Đặt: \(P=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\)

Từ đề bài ta có: \(abc\ge0\)

Ta chứng minh: \(\frac{a}{1+bc}\le\frac{2a}{2+abc}\)

\(\Leftrightarrow2a+a^2bc\le2a+2abc\)

\(\Leftrightarrow abc\left(2-a\right)\ge0\)(đúng)

Tương tự ta có:

\(\frac{b}{1+ac}\le\frac{2b}{2+abc}\)

\(\frac{c}{1+ab}\le\frac{2c}{2+abc}\)

\(\Rightarrow P\le\frac{2\left(a+b+c\right)}{2+abc}\)

\(\Rightarrow P-2\le\frac{2\left(a+b+c-2-abc\right)}{2+abc}\)

\(=-\frac{2\left(\left(1-a\right)\left(1-b\right)+\left(1-c\right)\left(1-ab\right)\right)}{2+abc}\)

 \(\le0\)(vì \(0\le a\le b\le c\le1\))

\(\Rightarrow P\le2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

23 tháng 1 2017

Từ \(\hept{\begin{cases}a\le1\Rightarrow a-1\le0\\b\le1\Rightarrow b-1\le0\end{cases}}\) suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0\Rightarrow ab+1\ge a+b\Rightarrow2ab+1\ge a+b\left(ab\ge0\right)\)

\(\Rightarrow2ab+2\ge a+b+c\left(1\ge c\right)\)

\(\Rightarrow\frac{1}{2ab+2}\le\frac{1}{a+b+c}\Rightarrow\frac{1}{2\left(ab+1\right)}\le\frac{1}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\).Cộng theo vế ta có:

\(VT\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

quá nhiều ý tưởng mà ko ai vào chém à