Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)=-f\left(-2\right)^2\le0\)
p/s: nhớ t nữa ko :>
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+\left(-2\right).b+c=4a-2b+c\)
\(f\left(3\right)=a.3^2+3.b+c=9a+3b+c\)
\(f\left(3\right)+f\left(-2\right)=4a-2b+c+9a+3b+c=13a+b+2c=0\)
\(\Rightarrow f\left(3\right)=-f\left(-2\right)\Rightarrow f\left(3\right)f\left(-2\right)=-\left[f\left(3\right)\right]^2\le0\left(đpcm\right)\)
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=9a-3b+c\\f\left(4\right)=16a+4a+c\end{cases}}\) \(\Rightarrow f\left(-3\right)+f\left(4\right)=25a+b+2c=0\)
\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)
Khi đó: \(f\left(-3\right)\cdot f\left(4\right)=-f\left(4\right)\cdot f\left(4\right)=-\left[f\left(4\right)\right]^2< 0\)
Đề bài bị sai rồi phần đpcm phải là "\(\le\)" chứ không phải "\(< \)
Ta có : \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c\\f\left(4\right)=a.4^2+b.4+c=16a+4b+c\end{cases}}\)
\(\Rightarrow f\left(4\right)+f\left(-3\right)=\left(16a+4b+c\right)+\left(9a-3b+c\right)=25a+b+2c=0\)
\(\Rightarrow f\left(-3\right)+f\left(4\right)=0\)
\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)
\(\Rightarrow f\left(-3\right).f\left(4\right)=-f\left(4\right).f\left(4\right)=-[f\left(4\right)]^2\le0\)\(\forall x\)
\(\Rightarrowđpcm\)
ta có : f(-2)=4a-2b+c ; f(3)=9a+3b+c
f(-2)+f(3)=13a+b+2c=0\(\Rightarrow\)f(-2) và f(3) là hai số đối nhau hoặc cùng bằng 0\(\Rightarrow\)f(-2).f(3)=<0
Ta có:
f(x) = ax2 + bx + c
=> f(-2) = a. (-2)2 - 2b + c = 4a - 2b + c
f(-3) = a.(-3)2 -3b + c = 9a - 3b + c
Mặt khác :
f(-2) + f(-3) = 4a - 2b + c + 9a - 3b + c = 13a + b + 2c = 0
=> f(-2) và f(-3) là 2 số đối nhau => f(-2).f(-3) < 0