K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 1 2019

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\end{matrix}\right.\)

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

\(M=\dfrac{\left(a+b\right)}{b}.\dfrac{\left(b+c\right)}{c}.\dfrac{\left(a+c\right)}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{-abc}{abc}=-1\)

TH2: \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\Leftrightarrow a=b=c\)

\(M=\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)=2.2.2=8\)

21 tháng 10 2018

@Nguyễn Thanh Hằng đọc xong xóa đii nha

7 tháng 10 2017

Áp dụng bđt AM-GM cho 2 số dương:

\(a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra khi:

\(a=b=c\)

Khi đó:

\(\left\{{}\begin{matrix}\dfrac{a}{b}=1\\\dfrac{b}{c}=1\\\dfrac{a}{c}=1\end{matrix}\right.\) \(\Leftrightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

10 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a+b+c=0\) hoặc \(a=b=c\) (bn tự chứng minh)

+) \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;a+c=-b\)\(\Rightarrow A=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)

\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

+) \(a=b=c\Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

17 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

Vì a, b, c là các số dương \(\Rightarrow a=b=c=0\) ( loại )

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow a=b=c\) ( tự chứng minh )

\(\Rightarrow M=\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)=0\)

Vậy M = 0

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(\frac{a^3}{(a+1)(b+1)}+\frac{a+1}{8}+\frac{b+1}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

\(\frac{b^3}{(b+1)(c+1)}+\frac{b+1}{8}+\frac{c+1}{8}\geq 3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)

\(\frac{c^3}{(c+1)(a+1)}+\frac{c+1}{8}+\frac{a+1}{8}\geq 3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)

Cộng theo vế:

\(\Rightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{a+b+c+3}{4}\geq \frac{3}{4}(a+b+c)\)

\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{3}{2}\geq \frac{9}{4}\)

\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}\geq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

24 tháng 9 2018

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\left(1\right)\)

C/m : \(a^2+b^2+c^2-ab-bc-ac\ge0\)

Giả sử điều phải c/m là đúng , ta có :

\(a^2+b^2+c^2-ab-bc-ac\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( điều này luôn đúng )

\(\Rightarrow\) điều giả sử là đúng

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\ge0\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

Lại có : \(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)

\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\)

\(=\dfrac{-abc}{abc}=-1\)

Vậy \(A=-1\)

24 tháng 6 2017

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

~*~*~*~*~

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)

\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)

\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng

=> (1) đúng

24 tháng 6 2017

Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).

19 tháng 7 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\)\(\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)

\(\Rightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: \(a+b+c=0\Rightarrow a=-\left(b+c\right);b=-\left(a+c\right);c=-\left(a+b\right)\)

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(M=\left(1+\dfrac{-b-c}{b}\right)\left(1+\dfrac{-c-a}{c}\right)\left(1+\dfrac{-a-b}{a}\right)\)

\(M=\left(1-1-\dfrac{c}{b}\right)\left(1-1-\dfrac{a}{c}\right)\left(1-1-\dfrac{b}{a}\right)\)

\(M=\left(-\dfrac{c}{b}\right)\left(-\dfrac{a}{c}\right)\left(-\dfrac{b}{a}\right)=-1\)

TH2: \(a=b=c\)

\(M=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)

19 tháng 7 2017

Do \(a^3+b^3+c^3=3abc\).

Nên ta dễ dàng cm đc: \(a+b+c=0\)

\(\Rightarrow\)a + b = -c; b+c = -a; a + c = -b (1)

\(\Rightarrow M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

=\(\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)(2)

Thay (1) vào (2) được:

\(M=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

Chúc các bn học tốtbanh

15 tháng 10 2018

tran nguyen bao quan, Mysterious Person, @Nk>↑@, Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Lê Bùi, Hung nguyen, Trần Quốc Lộc, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Nguyễn Huy Tú, Phương An, Trần Việt Linh,...

15 tháng 10 2018

cái này bảo tìm GT \(\Rightarrow\) P có GT cố định

ta có : \(a=b=c=1\) thỏa mãn đk bài toán

thế vào P ta có \(P=0\)

30 tháng 1 2019

từ đẳng thức: a^3+b^3+c^3=3abc

suy ra a=b=c hoặc a^2+b^2+c^2+ab+ac+bc=0

thay vào bt M

tìm được M=8 hoặc M=-1

hok tốt

30 tháng 1 2019

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+3a^2b+3b^2a+c^3-3a^2b-3b^2a-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2=ab+bc+ca\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\).Với a+b+c=0 thì \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Rightarrow}M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=-1\)

Với a=b=c thì \(M=8\)