Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM cho 2 số dương:
\(a^3+b^3+c^3\ge3abc\)
Dấu "=" xảy ra khi:
\(a=b=c\)
Khi đó:
\(\left\{{}\begin{matrix}\dfrac{a}{b}=1\\\dfrac{b}{c}=1\\\dfrac{a}{c}=1\end{matrix}\right.\) \(\Leftrightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a+b+c=0\) hoặc \(a=b=c\) (bn tự chứng minh)
+) \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;a+c=-b\)\(\Rightarrow A=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)
\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)
+) \(a=b=c\Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
Vì a, b, c là các số dương \(\Rightarrow a=b=c=0\) ( loại )
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow a=b=c\) ( tự chứng minh )
\(\Rightarrow M=\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)=0\)
Vậy M = 0
Lời giải:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{a^3}{(a+1)(b+1)}+\frac{a+1}{8}+\frac{b+1}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
\(\frac{b^3}{(b+1)(c+1)}+\frac{b+1}{8}+\frac{c+1}{8}\geq 3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)
\(\frac{c^3}{(c+1)(a+1)}+\frac{c+1}{8}+\frac{a+1}{8}\geq 3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)
Cộng theo vế:
\(\Rightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{a+b+c+3}{4}\geq \frac{3}{4}(a+b+c)\)
\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}+\frac{3}{2}\geq \frac{9}{4}\)
\(\Leftrightarrow \frac{a^3}{(a+1)(b+1)}+\frac{b^3}{(b+1)(c+1)}+\frac{c^3}{(c+1)(a+1)}\geq \frac{3}{4}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\left(1\right)\)
C/m : \(a^2+b^2+c^2-ab-bc-ac\ge0\)
Giả sử điều phải c/m là đúng , ta có :
\(a^2+b^2+c^2-ab-bc-ac\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( điều này luôn đúng )
\(\Rightarrow\) điều giả sử là đúng
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Lại có : \(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)
\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\)
\(=\dfrac{-abc}{abc}=-1\)
Vậy \(A=-1\)
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)
~*~*~*~*~
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)
\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)
\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)
\(=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)
\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)
\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng
=> (1) đúng
Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\)\(\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)
\(\Rightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
TH1: \(a+b+c=0\Rightarrow a=-\left(b+c\right);b=-\left(a+c\right);c=-\left(a+b\right)\)
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(M=\left(1+\dfrac{-b-c}{b}\right)\left(1+\dfrac{-c-a}{c}\right)\left(1+\dfrac{-a-b}{a}\right)\)
\(M=\left(1-1-\dfrac{c}{b}\right)\left(1-1-\dfrac{a}{c}\right)\left(1-1-\dfrac{b}{a}\right)\)
\(M=\left(-\dfrac{c}{b}\right)\left(-\dfrac{a}{c}\right)\left(-\dfrac{b}{a}\right)=-1\)
TH2: \(a=b=c\)
\(M=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Do \(a^3+b^3+c^3=3abc\).
Nên ta dễ dàng cm đc: \(a+b+c=0\)
\(\Rightarrow\)a + b = -c; b+c = -a; a + c = -b (1)
\(\Rightarrow M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
=\(\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)(2)
Thay (1) vào (2) được:
\(M=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)
Chúc các bn học tốt
tran nguyen bao quan, Mysterious Person, @Nk>↑@, Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Lê Bùi, Hung nguyen, Trần Quốc Lộc, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Nguyễn Huy Tú, Phương An, Trần Việt Linh,...
cái này bảo tìm GT \(\Rightarrow\) P có GT cố định
ta có : \(a=b=c=1\) thỏa mãn đk bài toán
thế vào P ta có \(P=0\)
từ đẳng thức: a^3+b^3+c^3=3abc
suy ra a=b=c hoặc a^2+b^2+c^2+ab+ac+bc=0
thay vào bt M
tìm được M=8 hoặc M=-1
hok tốt
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+3a^2b+3b^2a+c^3-3a^2b-3b^2a-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2=ab+bc+ca\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\).Với a+b+c=0 thì \(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Rightarrow}M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=-1\)
Với a=b=c thì \(M=8\)
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\end{matrix}\right.\)
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
\(M=\dfrac{\left(a+b\right)}{b}.\dfrac{\left(b+c\right)}{c}.\dfrac{\left(a+c\right)}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{-abc}{abc}=-1\)
TH2: \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\Leftrightarrow a=b=c\)
\(M=\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)\left(\dfrac{a}{a}+1\right)=2.2.2=8\)