K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 6 2018
a)Để \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất
\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất
\(\frac{1003}{999-x}\ge1003\)
Dấu "=" xảy ra khi
\(\frac{1003}{999-x}=1003\)
=> 999 - x = 1
x = 999-1
x = 998
=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998
b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất
=> \(\frac{1003}{999+x}\) có giá trị lớn nhất
mà x là số tự nhiên
\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)
Dấu "=" xảy ra khi
1003/(999+x) = 1003/999
=> 999 + x = 999
x = 0
=> giá trị nhỏ nhất của A = 2003 - 1003/999+0 = 2003 - 1003/999 = 2002 và 4/999 tại x = 0