Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57} +2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+..2^{57}.\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15.\left(2+2^5+...+2^{57}\right)\text{chia hết cho 15}\)
\(=5.3.\left(2+2^5+...+2^{57}\right)\text{ chia hết cho 5}\left(1\right)\)
A = \(2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{56}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{56}.31\)
\(=31.\left(2+2^6+...+2^{56}\right)\text{ chia hết cho 31}\left(2\right)\)
Từ (1) và (2) => A chia hết cho 5.31
B = 1 + A nên B chia 5,31 và 15 đều dư 1.
3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)
3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101
3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)
2A = 3101 - 31 = 3101 - 3
A = 3101−32
b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)
A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)
A = 120 +...+ 396.120
A = 120(1 +...+ 396) chia hết cho 120 (ĐPCM)
\(B=2+2^2+2^3+2^4+2^5+......+2^{180}\)
\(B=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+......+2^{176}\left(2+2^2+2^3+2^4\right)\)
\(B=30+2^4.30+....+2^{176}.30\)
\(B=30\left(1+2^4+....+2^{176}\right)\) chia hết cho 2 và 5
S = (2+22) + (23+24) + ... + (259+260)
= 2(1+2) + 23(1+2) + ... + 259(1+2)
= 3(2+23+...+259) \(⋮\)3
chia hết cho 7: cách làm tương tự nhưng nhóm 3 số vào với nhau
Tính S:
2S = 22+23+...+261
=> S=2S-S = (22+23+...+261) - (2+22+...+260)
= 261-2
3A = 3 + 32 + .... + 321
3A - A = (3 - 3) + (32 - 32) + ..... + (320 - 320) + 321 - 1
2A = 321 - 1
Vậy A = \(\frac{3^{21}-1}{2}\)
Nên B - A= \(\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{3^{21}}{2}-\frac{3^{21}}{2}+\frac{1}{2}=\frac{1}{2}\)
2) Ta có lũy thừa của số tận cùng là 1 luôn có chữ số tận cùng là 1
C = (....1) + (...1) + ..... + (....1)
C = ..............0
C tận cùng là 0 => Chia hết cho 5
B = 2 + 22 + 23 + ... + 2120
= (2+22) + (23+24) + ... + (2119+2120)
= 2(1+2) + 23(1+2) + ... + 2119(1+2)
= 3(2+23+...+2119) \(⋮\) 3
Tương tự với 7 và 15.