Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a, b, c khác -1 thì x + y + z khác 0.
Từ đề bài ta có: y + z = ax + cz + ax + by
<=> 2ax = y + z - x
--> a = (y + z - x)/(2x) --> a + 1 = (x + y + z)/(2x)
--> 1/(1 + a) = 2x/(x + y + z)
tương tự: 1/(1 + b) = 2y/(x + y + z)
1/(1 + c) = 2z/(x + y + z)
--> 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = (2x + 2y + 2z)/(x + y + z) = 2
vậy giá trị của biểu thức A= 2
\(2x-2y=by+cz-cz-ax=by-ax\)
\(\Rightarrow2x-2y=by-ax\)
\(\Rightarrow2x+ax=2y+by\)
\(\Rightarrow x\left(a+2\right)=y\left(b+2\right)\)
\(\Rightarrow a+2=\dfrac{y\left(b+2\right)}{x}\)
\(2z-2y=ax+by-cz-ax=by-cz\)
\(\Rightarrow2z+cz=2y+by\)
\(\Rightarrow z\left(c+2\right)=y\left(b+2\right)\)
\(\Rightarrow c+2=\dfrac{y\left(b+2\right)}{z}\)
\(A=\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}=\dfrac{2}{\dfrac{y\left(b+2\right)}{x}}+\dfrac{2}{b+2}+\dfrac{2}{\dfrac{y\left(b+2\right)}{z}}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2}{b+2}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2y}{y\left(b+2\right)}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x+2y+2z}{y\left(b+2\right)}=\dfrac{by+cz+cz+ax+ax+by}{by+2y}=\dfrac{2\left(ax+by+cz\right)}{by+cz+ax}=2\)
Có nhiều cách làm bài này.
Có \(2a+2b+2c=by+cz+a.x+cz+a.x+by\)
\(2\left(a+b+c\right)=2\left(a.x+by+cz\right)\)
\(\Rightarrow a+b+c=a.x+by+cz\)
- \(a+b+c=a.x+\left(by+cz\right)=a.x+2.a=a\left(x+2\right)\)
\(\Rightarrow\frac{1}{x+2}=\frac{a}{a+b+c}\)
- \(a+b+c=\left(a.x+by\right)+cz=2c+cz=c\left(z+2\right)\)
\(\Rightarrow\frac{1}{z+2}=\frac{c}{a+b+c}\)
- \(a+b+c=by+\left(a.x+cz\right)=by+2b=b\left(y+2\right)\)
\(\Rightarrow\frac{1}{y+2}=\frac{b}{a+b+c}\)
\(\Rightarrow M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a+b+c}{a+b+c}=1\)
Vậy ...