Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
4. \(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)
\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)
\(=a^{2008}\left(a^2-1\right)\left(a^2+1\right)+b^{2008}\left(b^2-1\right)\left(b^2+1\right)+c^{2008}\left(c^2-1\right)\left(c^2+1\right)\)
\(=a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)
Dễ thấy a-1, a, a+1 là 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 3 \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
Tương tự đối với b và c ta suy ra \(A⋮6\) (1)
Xét các số dư của a cho 5
- Nếu \(a⋮5\) thì \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 1 thì \(\left(a-1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 2 hoặc 3 thì \(\left(a^2+1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 4 thì \(\left(a+1\right)⋮5\) nên \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
Như vậy \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\) \(\forall a\in Z_+\)
Tương tự \(\left[b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)\right]⋮5\)
và \(\left[c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\right]⋮5\)
Do đó \(A⋮5\) (2)
Từ (1) và (2) suy ra \(A⋮30\)
a) điều kiện \(n\in Z\)
\(n^2+2n+4=n^2+2n+1+3=\left(n+1\right)^2+3\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2+3\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2+3=1\\\left(n+1\right)^2+3=-1\\\left(n+1\right)^2+3=11\\\left(n+1\right)^2+3=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=-2\left(vôlí\right)\\\left(n+1\right)^2=-4\left(vôlí\right)\\\left(n+1\right)^2=8\\\left(n+1\right)^2=-14\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=\sqrt{8}\\n+1=-\sqrt{8}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=\sqrt{8}-1\left(loại\right)\\n=-\sqrt{8}-1\left(loại\right)\end{matrix}\right.\) vậy không có giá trị nào thỏa mãn
b) điều kiện \(x\in Z\)
\(n^2+2n-4=n^2+2n+1-5=\left(n+1\right)^2-5\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2-5\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2-5=1\\\left(n+1\right)^2-5=-1\\\left(n+1\right)^2-5=11\\\left(n+1\right)^2-5=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=6\\\left(n+1\right)^2=4\\\left(n+1\right)^2=16\\\left(n+1\right)^2=-6\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n+1=\sqrt{6}\\n+1=-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=2\\n+1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=4\\n+1=-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n=\sqrt{6}-1\left(loại\right)\\n=-\sqrt{6}-1\left(loại\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=1\left(tmđk\right)\\n=-3\left(tmđk\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=3\left(tmđk\right)\\n=-5\left(tmđk\right)\end{matrix}\right.\end{matrix}\right.\)
vậy \(n=1;n=-3;n=3;n=-5\)
Các bạn chú ý dấu { và [. Các dấu này khác nhau và việc dùng sai chúng dẫn tới lời giải của bài toán sai hoàn toàn.
- Dấu { có nghĩa là " và " hay " đồng thời xảy ra" thường chỉ dùng trong tìm điều kiện xác định hoặc những cái nào cần nhiều hơn 2 điều kiện.
- Dấu [ có nghĩa là hoặc : nghĩa là cái này xảy ra hoặc cái kia xảy ra, không nhất thiết cả hai cái cùng xảy ra.
Ví dụ: \(\left(n+1\right)^2\) là ước của 5. Như vậy có 4 trường hợp độc lập xảy ra và việc tồn tại của trường hợp này độc lập so với trường hợp khác nên ta dùng dấu [ để chia các trường hợp. Nếu dùng dấu { - có nghĩa là mọi điều kiện phải thỏa mãn - điều này sai về lô-gic khi \(\left(n+1\right)^2\) không thể vừa bằng 1 và vừa bằng 5 được.
Các bạn chú ý các lỗi sai về lô-gic sẽ bị trừ điểm rất nặng trong bài thi.