Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{\sqrt{y}}{x-\sqrt{xy}}+\frac{\sqrt{x}}{y-\sqrt{xy}}\right):\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
\(=\left(\frac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\frac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\right)\cdot\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{y}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}-\frac{x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{-\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=-1\)
Vậy biểu thức trên không phụ thuộc vào biến.
\(A=\left(\dfrac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(x-y\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(x-y\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1\)