Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
=>\(B=\frac{1.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}{3.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{14}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{\frac{4}{4}-\frac{4}{16}-\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)
=>\(B=\frac{1}{3}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
=>\(B=\frac{1}{3}.\frac{3}{4}+\frac{5}{8}\)
=>\(B=\frac{1}{4}+\frac{5}{8}\)
=>\(B=\frac{2}{8}+\frac{5}{8}\)
=>\(B=\frac{7}{8}\)
l-i-k-e cho mình nhé bạn.
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{4}{14}-\frac{2}{13}}\times\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{\frac{2}{6}+\frac{2}{14}-\frac{2}{26}}{\frac{4}{6}+\frac{4}{14}-\frac{4}{26}}\times\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{356}}{\frac{4}{4}-\frac{4}{16}+\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)
\(=\frac{2\left(\frac{1}{6}+\frac{1}{14}-\frac{1}{26}\right)}{4\left(\frac{1}{6}+\frac{1}{14}-\frac{1}{26}\right)}\times\frac{3\left(\frac{1}{4}-\frac{1}{16}+\frac{1}{64}-\frac{1}{356}\right)}{4\left(\frac{1}{4}-\frac{1}{16}+\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
\(=\frac{2}{4}\times\frac{3}{4}+\frac{5}{8}\)
\(=\frac{1}{2}\times\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}\)
\(=\frac{8}{8}=1\)
\(\frac{\frac{109}{3.7.13}}{\frac{361}{3.14.13}}\)\(\frac{\frac{153}{256}}{\frac{51}{64}}\)+5/8
=\(\frac{327}{722}\)+5/8
=\(\frac{3113}{2888}\)
\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)
\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)
\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)
\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\) \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\) \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\) \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)
\(=\frac{58}{7}-\frac{487}{63}\) \(=\frac{577}{45}-\frac{280}{45}\)
\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\) \(=\frac{33}{5}\)
\(P=M-N\)
\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)
\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)
\(\Rightarrow P=\frac{-272}{45}\)
Vậy P = \(\frac{-272}{45}\)
\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)
\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)
\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)
\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}=1\)
Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !
a. \(1\frac{5}{7}\)-\(\frac{9}{7}\)*\(\frac{16}{9}\)
=\(\frac{12}{7}\)-\(\frac{16}{7}\)
=\(\frac{-4}{7}\)
b. \(\frac{-5}{8}\):\(\frac{1}{4}\)-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=\(\frac{-5}{8}\cdot\)4-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=4*(\(\frac{-5}{8}\)-\(\frac{6}{13}\))+\(\frac{3}{8}\)
=4*\(\frac{-113}{104}\)+\(\frac{3}{8}\)
=\(\frac{-113}{26}\)+\(\frac{3}{8}\)
=\(\frac{-413}{104}\)
c.( \(\frac{3}{8}\)+\(\frac{-1}{4}\)-\(\frac{5}{12}\)):\(\frac{1}{3}\)
=\(\frac{-7}{24}\)*3
=\(\frac{-7}{8}\)
Học tốt