Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=20+21+22+...+22010+22011
=2-1+22-2+23-22+....+22011-22010+22012-22011
=22012-1
=>A và B là 2 số tự nhiên liên tiếp
=>đpcm
Ta có:
\(B=2^{2012}+2^{2011}+...+2^3+2^2+2+1\)
\(\Rightarrow2B=2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\)
\(\Rightarrow2B-B=\left(2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\right)-\left(2^{2012}+...+1\right)\)
\(\Rightarrow B=2^{2013}-1\)
\(A=2^{2003}.9+2^{2003}.1005\)
\(\Rightarrow A=2^{2003}.\left(9+1005\right)\)
\(\Rightarrow A=2^{2003}.1024\)
\(\Rightarrow A=2^{2003}.2^{10}\)
\(\Rightarrow A=2^{2013}\)
Vì \(2^{2013}-1< 2^{2013}\) nên A > B
Vậy A > B
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)
\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)
Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)
Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)
Vậy a và b là hai số chính phương liên tiếp.
\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)
1/ (69.210+1210)+(219.273+15.49.94) = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39
= 218.39(2+3.22+5)=19.218.39
\(A=1+2+2^2+...+2^{2018}.\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+...+2^{2018}\right)\)
\(\Leftrightarrow A=2^{2019}-1\)
Mà B=??.. tự lm típ
A= 1+2^1+2+3+...+2018
B=2^2019
=>A>B(1+2^1+2+3+4+...+2018>2^2019)
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)
Đpcm
\(A=1+2+2^2+..........+2^{2011}\)
\(\Leftrightarrow2A=2+2^2+.............+2^{2011}+2^{2013}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+..........+2^{2012}\right)-\left(1+2+2^2+...........+2^{2011}\right)\)
\(\Leftrightarrow A=2^{2012}-1\)
Mà \(B=2^{2012}\)
\(\Leftrightarrow A;B\) là 2 số tự nhiên liên tiếp
A=1+2+2^2+...+2^2001
2A=2+2^2+....+2^2011+2^2013
2A-A=(2+2^2+....+2^2012)-(1+2+...+2^2011)
A=2^2011-1
Mà B=2^2012
\(\Rightarrow\)A,B là 2 số liên tiếp