\(3a^2+3b^2=10ab\). tính \(p=\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

Th1: P=0

TH2: P=-1

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

21 tháng 12 2016

Có; \(2a^2+2b^2=5ab\)

\(\Leftrightarrow\left(2a^2-4ab\right)+\left(2b^2-ab\right)=0\)

\(\Leftrightarrow2a\left(a-2b\right)+b\left(2b-a\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a-2b=0\\2a-b=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}a=2b\left(loai\right)\\2a=b\left(tm\right)\end{array}\right.\)

Với: \(2a=b\), ta có: \(P=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

30 tháng 7 2017

đổi thành a>b>0 thì lm tn hả bạn

24 tháng 7 2016

a) Xét : \(P^2=\frac{3\left(a-b\right)^2}{3\left(a+b\right)^2}=\frac{3\left(a^2+b^2\right)-6ab}{3\left(a^2+b^2\right)+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)

Vì a > b > 0 nên P > 0 . Vậy \(P=\frac{1}{2}\)

b) Tương tự.

24 tháng 7 2016

a/ \(3a^2+3b^2=10ab\Leftrightarrow3\left(a^2+b^2\right)=10ab\Leftrightarrow a^2+b^2=\frac{10ab}{3}\)

\(\Leftrightarrow a^2+b^2-2ab=\frac{10ab}{3}-2ab\Leftrightarrow\left(a-b\right)^2=\frac{4ab}{3}\)

tương tự: \(a^2+b^2=\frac{10ab}{3}\Leftrightarrow a^2+b^2+2ab=\frac{10ab}{3}+2ab\Leftrightarrow\left(a+b\right)^2=\frac{16ab}{3}\)

\(\Rightarrow P^2=\left(\frac{a-b}{a+b}\right)^2=\frac{\frac{4ab}{3}}{\frac{16ab}{3}}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)

bố 32 tuổi

con 6 tuổi

ủng hộ nha

24 tháng 7 2016

Câu b). Theo đầu bài ta có:
\(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=ab+4ab\)
\(\Rightarrow2a^2+2b^2-4ab=ab\)
\(\Rightarrow2\left(a^2+b^2-2ab\right)=ab\)
\(\Rightarrow\left(a-b\right)^2=\frac{ab}{2}\)
\(\Rightarrow a-b=\sqrt{\frac{ab}{2}}\)
Mà \(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=9ab-4ab\)
\(\Rightarrow2a^2+2b^2+4ab=9ab\)
\(\Rightarrow2\left(a^2+b^2+2ab\right)=9ab\)
\(\Rightarrow\left(a+b\right)^2=\frac{9ab}{2}\)
\(\Rightarrow a+b=\sqrt{\frac{9ab}{2}}\)
Từ trên suy ra:
\(Q=\frac{a+b}{a-b}=\left(a+b\right):\left(a-b\right)\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}}:\sqrt{\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}:\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9\cdot ab\cdot2}{ab\cdot2}}\)
\(\Leftrightarrow Q=\sqrt{9}=3\)

23 tháng 5 2018

Để sử dụng đc \(a^2+b^2=\frac{10ab}{3}\) cần có \(P^2=\left(\frac{a-b}{a+b}\right)^2\)

Từ đó ta có lời giải bài toán làm tiếp đi nhé