K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)

Do b > a > 0

=>  b = 2a

\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\left(2a-b\right)\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a-b=0\left(L\right)\\a-2b=0\end{cases}}\)

=>  \(a=2b\)

=>  \(A=\frac{a+2b}{2a-b}=\frac{2b+2b}{2.2b-b}=\frac{4b}{3b}=\frac{4}{3}\)

14 tháng 5 2016

e Hoàng Phúc tui co bai tuong tu ne

14 tháng 5 2016

M = 2(a-2ab+b) / 2(a+2ab+b) =ab/9ab = 1/9

lưu ý: a;b binh phuong nhé tui làm bieng viêt

22 tháng 2 2019

Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm tại link này nhé!

22 tháng 2 2019

​                           Giải

Ta có : \(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)


Vì \(b>a>0\) nên loại trường hợp a = 2b

\(\Leftrightarrow2a=b\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

Vậy \(A=-3\)

14 tháng 5 2018

\(M=a^2+b^2+2a-2b-2ab+65\)

\(=\left(a^2-2ab+b^2\right)+2\left(a-b\right)+65\)

\(=\left(a-b\right)^2+2\left(a-b\right)+65\)

Ta có: \(a=5+b\Leftrightarrow a-b=5\)

\(\Rightarrow M=5^2+2.5+65=25+10+65=100\)

Vậy \(M=100.\)

\(2a^2+2b^2=5ab\)

\(\leftrightarrow2a^2-4ab-ab+2b^2=0\leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\leftrightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\)

TH1 : \(b=2a\)

\(M=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

Chỉ xảy ra ở TH1 vì \(b>a>0\)nên b=2a

9 tháng 9 2018

Ta có: 3a2 + b2 = 4ab

<=> 3a2 + b2 - 4ab = 0

<=> a2 + b2 - 2ab + 2a2 - 2ab = 0

<=> (a - b)(3a - b) = 0 <=> a = b/3 (a - b = 0 loại vì a = b)

=> B = \(\dfrac{a-b}{a+b}\)= \(\dfrac{\dfrac{1}{3}b-b}{\dfrac{1}{3}b+b}\)= \(-\dfrac{2}{3}b:\dfrac{4}{3}b\) = \(-\dfrac{1}{2}\).

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Ta có:

$2a^2+2b^2+2c^2=2ab+2bc+2ac$

$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Rightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Ta thấy: $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì:

$(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

Khi đó: \(N=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=(1+1)(1+1)(1+1)=8\)

19 tháng 5 2019

#)Giải :

c) ( a + b )3 = (a+b)(a+b)(a+b)

= a(a+b)(a+b) +b(a+b)(a+b)

= (a2+ab)(a+b)+(ab+b2)(a+b)

= (a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b2)

= a3+a2b+a2b+ab2+a2b+ab2+ab2+b2

= a3+a2b+a2b+a2b+ab2+ab2+ab2+b2

= a3+3a2b+3ab2+b2

Vậy : (a+b)3= a3+ 3a2b + 3ab2 + b2 ( dpcm )

       #~Will~be~Pens~#

19 tháng 5 2019

a) \(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)\)

\(=a\left(a+b\right)+b\left(a+b\right)\)

\(=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\)

Vậy \(\left(a+b\right)^2=a^2+2ab+b^2\)