K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

\(\frac{a+b}{2}\ge ab\Rightarrow a+b\ge2ab\Rightarrow a^2+2ab+b^2\ge2ab\Rightarrow a^2+b^2\ge0\left(1\right)\)

Theo đề ta có a > 0 , b > 0 nên a2 + b2 > 0 => (1) sai => đề sai

16 tháng 4 2017

có trường hợp khác mà như a=2

b=2

đề này 0 sai

27 tháng 3 2017

Ta có: \(\left(a-b\right)^2\ge0\forall a;b\) và ab>0 (theo đề bài)

=>\(\frac{\left(a-b\right)^2}{ab}\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{a^2}{ab}-\frac{2ab}{ab}+\frac{b^2}{ab}\ge0\)

\(\Leftrightarrow\frac{a}{b}-2+\frac{b}{a}\ge0\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\) (đpcm)

22 tháng 11 2016

\(\frac{a+b}{2}\)\(\ge\)ab

<=> \(\frac{a+b}{2}\)- ab \(\ge\)0

<=> \(\frac{a+b-2ab}{2}\)\(\ge\)0

<=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\) 0

Đúng, vì (a - b) 2 \(\ge\)0 vs mọi a, b

22 tháng 11 2016

tích nha!

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

13 tháng 6 2018

Bài 1:

Ta có:

\(\dfrac{a}{b}>\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)

\(\Leftrightarrow ad>bc\)

Vậy ...

Bài 2:

Ta có:

\(0< a< 5< b\)

\(\Leftrightarrow a;b>0\)

\(\Leftrightarrow\dfrac{b}{a}>0\)

\(a< 5< b\)

\(\Leftrightarrow a< b\)

\(\Leftrightarrow\dfrac{b}{a}>1\)

Vậy ...

3 tháng 9 2016

bn vào câu hỏi tương tự

có người làm câu này rồi

29 tháng 7 2017

\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+ab< bc+ab\)\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+cd< bc+cd\)\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

23 tháng 6 2018

Có \(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (vì b, b + d > 0) (1)

Có \(ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (vì b + d, d > 0) (2)

Từ (1)(2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

8 tháng 6 2015

b,

Ad<bc=>ad/db<bc/db=>a/b<c/d

8 tháng 6 2015

a) \(\frac{a}{b}<\frac{c}{d}\Rightarrow\frac{ad}{bd}<\frac{bc}{bd}\) \(\Rightarrow\) ad < bc