K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

giúp mình với nha các bạn

20 tháng 2 2018

\(b^2\)\(ac\)=> \(\frac{a}{b}\)\(\frac{b}{c}\)(1)

\(c^2\)\(bd\)=> \(\frac{b}{c}\)\(\frac{c}{d}\)(2)

từ (1) và (2) => \(\frac{a}{b}\)\(\frac{b}{c}\)\(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)\(\frac{c^3}{d^3}\)\(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)*   \(\frac{b}{c}\)*   \(\frac{c}{d}\)\(\frac{a}{d}\)         (*)

\(\frac{a^3}{b^3}\)=   \(\frac{b^3}{c^3}\)=  \(\frac{c^3}{d^3}\)=   \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)            (**)

Từ (*) và (**) => \(\frac{a}{d}\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)  (đpcm)

16 tháng 12 2018

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

27 tháng 3 2024

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

4 tháng 11 2015

b2 = ac => a/b = b/c

c2 = bd => b/c = c/d

=> a/b = b/c = c/d => a3/b= b3/c= c3/d3 = (a+ b3 + c3) / (b3 + c3 + d3) (Theo t/c của dãy tỉ số bằng nhau)

Mà a3/b= a/b .a/b .a/b = a/b. b/c . c/d = a/d

Nên  (a+ b3 + c3) / (b3 + c3 + d3) = a/d

3 tháng 11 2015

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

Mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

14 tháng 12 2016

Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)