K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2014

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{a+c+d}+\frac{d}{a+b+d}\)>\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)=1(vì a,b,c,d là các số dương)

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{a+c+d}+\frac{d}{a+b+d}\)=\(\left(\frac{a}{a+b+c}+\frac{c}{a+c+d}\right)\left(\frac{b}{b+c+d}+\frac{d}{a+b+d}\right)\)<\(\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{b+d}\right)\)=2

12 tháng 3 2017

Bạn Nguyễn Tư Thành Nhân quên dấu cộng ở phần \(\left(\frac{a}{a+b+c}+\frac{c}{a+c+d}\right)+\left(\frac{b}{b+c+d}+\frac{d}{d+a+b}\right)\)

18 tháng 10 2015

tạo thành 8 cặp góc so le trong     

6 tháng 5 2017

LAM GIUP VS NHA

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng