Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo cho 0<=a,b,c<=1 cmr: a+b2+c3-a.b-a.c-b.c <=1? | Yahoo Hỏi & Đáp
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a^2+2\right)\left[1+\frac{\left(b+c\right)^2}{2}\right]\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{1}{a^2+2}\le\frac{1+\frac{\left(b+c\right)^2}{2}}{\left(a+b+c\right)^2}\)
Tương tự : \(\frac{1}{b^2+2}\le\frac{1+\frac{\left(a+c\right)^2}{2}}{\left(a+b+c\right)^2}\) ; \(\frac{1}{c^2+2}\le\frac{1+\frac{\left(a+b\right)^2}{2}}{\left(a+b+c\right)^2}\)
Cộng vế theo vế,ta có :
\(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le\frac{3+\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2}{2}}{\left(a+b+c\right)^2}\)
\(=\frac{3+a^2+b^2+c^2+ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi a = b = c = 1
Đặt \(P=\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\)
Thực hiện phép biến đổi theo biểu thức P ta được
\(Q=3-2P=\frac{a^2}{a^2+2}+\frac{b^2}{a^2+2}+\frac{c^2}{c^2+2}\)
Theo BĐT Cauchy-Schwarz ta có:
\(Q\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=1\)
\(\Rightarrow P\le1\). Dấu "=" xảy ra <=> a=b=c=1
Từ giả thiết ta có:
\(\left(a+b+c\right)^3=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
\(\frac{3}{ab+bc+ac}=\frac{3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)}{ab+bc+c}=\frac{3\left(a^2+b^2+c^2\right)}{ab+bc+ca}+6\)
\(\frac{2}{a^2+b^2+c^2}=\frac{2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{a^2+b^2+c^2}=2+\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)
Áp dụng bđt Cosi cho 2 số dương ta có:
\(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\ge6+2+2\sqrt{\frac{3\left(a^2+b^2+c^2\right)4\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}=8+2\sqrt{12}\)
\(>8+2\sqrt{9}=14\)
1,
a) Ta có \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Dấu "=" xảy ra khi a=b=0, trái với a3+b3>0
=> a2-ab+b2>0, mà
a3+b3=(a+b)(a2-ab+b2)>0
=> a+b>0
Lại có a,b thuộc Z nên a2-ab+b2 >= 1 nên a3+b3 >=a+b
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
b) Ta xét 2 TH
-Nếu ab =< 0, ta có:
a3+b3=(a+b)(a2-ab+b2) >= (a+b)(a2+b2)>= a2+b2, do a+b >=1
-Nếu ab>0 kết hợp với a+b>0 => a>0; b>0 dẫn tới a+b >=2
=> a3+b3=(a+b)(a2-ab+b2) >=2(a2-ab+b2)
=a2+b2+(a-b)2 >= a2+b2
Dẫn tới a3+b3 >= a2+b2
Dấu "=" xảy ra khi (a;b) \(\in\){(1;1);(1;0);(0;1)}
Cho mk k nhé!
4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13
1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)
Đề khắm vậy -_- a + b = 3 - c thì viết luôn thành a + b + c = 3 cho rồi .... bày đặt
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(x;y;z>0\right)\)
\(VT=a^3+b^3+c^3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^3+b^3+c^3+\frac{18}{a+b+c}\)
\(=a^3+b^3+c^3+6\)
Áp dụng bđt Cô-si cho 3 số ta đc
\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}=3a\)
\(b^3+1+1\ge3b\)
\(c^3+1+1\ge3c\)
Cộng từng vế vào ta được
\(VT\ge a^3+b^3+c^3+6\ge3\left(a+b+c\right)=\left(a+b+c\right)^2\)
Lại có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(Phá ngoặc + chuyển vế -> tổng bình phương)
\(\Rightarrow VT\ge3\left(ab+bc+ca\right)\)(Đpcm)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy ....