Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b)2+(b-c)2+(c-a)2=4(a2+b2+c2-ab-ac-bc)
=>a2-2ab+b2+b2-2bc+c2+c2-2ac+a2=4a2+4b2+4c2-4ab-4ac-4bc
=>2a2+2b2+2c2-2ab-2ac-2bc=4a2+4b2+4c2-4ab-4ac-4bc
=>2a2+2b2+2c2-2ab-2ac-2bc-4a2-4b2-4c2+4ab+4bc+4ac=0
=>-2a2-2b2-2c2+2ab+2ac+2bc=0
=>-(2a2+2b2+2c2-2ab-2ac-2bc)=0
=>-[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]=0
=>-[(a-b)2+(b-c)2+(a-c)2]=0
=>(a-b)2+(b-c)2+(a-c)2=0
=>(a-b)=(b-c)=(a-c)=0
=>a-b=0 =>a=b (1)
b-c=0 =>b=c (2)
từ (1) và (2)
=>a=b=c (đpcm)
(a-b)2+(b-c)2+(c-a)2=4*(a2+b2+c2-ab-ac-bc) (*)
<=> a2-2ab + b2+ b2-2bc+c2+c2-2ac+a2= 4*(a2+b2+c2-ab-ac-bc)
<=>2a2+2b2+2c2-2ab-2ac-2bc = 4*(a2+b2+c2-ab-ac-bc)
<=>2*(a2+b2+c2-ab-ac-bc)=0 (nhân 2 vế cho 2)
<=>4*(a2+b2+c2-ab-ac-bc)=0
Theo (*) =>(a-b)2+(b-c)2+(c-a)2=0
=> a=b=c (đpcm)
1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!
Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé
(a - b)2 + (b - c)2 + (c - a)2 = 3(a2 + b2 + c2 - ab - bc - ca)
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)(2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca)
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)[(a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2)]
<=> (a - b)2 + (b - c)2 + (c - a)2 = \(\dfrac{3}{2}\)[(a - b)2 + (b - c)2 + (c - a)2]
<=> \(\dfrac{1}{2}\)[(a - b)2 + (b - c)2 + (c - a)2] = 0
<=> a = b = c
Cách 2 :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=3\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
a2+b2+c2=ab+bc+ac
\(\Rightarrow\) 2a2+2b2+2c2=2ab+2bc+2ac
\(\Leftrightarrow\)2a2+2b2+2c2-2ab-2bc-2ac=0
\(\Leftrightarrow\)(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0
\(\Leftrightarrow\)(a-b)2+(b-c)2+(a-c)2=0
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Leftrightarrow\)a=b=c
Câu hỏi của Khoa Nguyễn Đăng - Toán lớp 8 - Học toán với OnlineMath
\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)
\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)
a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Leftrightarrow ab+bc+ac=\frac{-a^2-b^2-c^2}{2}\)
\(\Rightarrow2\left(ab+bc+ac\right)^2=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)(1)
Lại có \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(=a^4+b^4+c^4+2\left(ab+bc+ac\right)^2-2abc\left(a+b+c\right)\)
\(=a^4+b^4+c^4+2\left(ab+bc+ac\right)^2\)(do a+b+c=0)
Thay vào (1)
\(2\left(ab+bc+ca\right)^2=\frac{a^4+b^4+c^4}{2}+\left(ab+cb+ac\right)^2\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{a^4+b^4+c^4}{2}\)
\(\Rightarrowđpcm\)
phân tích vế trái từ vế trái cho vế phải vậy là ra