K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016
Em mới học lớp 7
14 tháng 6 2016

VTVP=a24+b2+c2abbc+2bc+a212=(a2bc)2+a236bc12>0 đpcm

Cách khác:

Từ giả thiết suy ra a>0 và bc>0. Bất đẳng thức cần chứng minh tương đương với
a23+(b+c)23bca(b+c)013+(b+ca)2b+ca3a30
Vì a3>36 nên13+(b+ca)2b+ca3a3>(b+ca)2b+ca+14=(b+ca12)2>0
14 tháng 1 2017

\(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\\a^3+b^3+c^3=1\end{cases}}}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\hept{\begin{cases}a+b=0\\a+c=0\\b+c=0\end{cases}}\)dấu "{" là dấu hoặc nhé hàm f(x) không có "[" ba(*)

(*) và (1)\(\Rightarrow P=1\)

6 tháng 1 2017

Từ \(a^3+b^3+c^3=3abc\)\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

*)Xét \(a=b=c\). Khi đó \(\frac{a^{2011}}{b^{2011}}+\frac{b^{2011}}{c^{2011}}+\frac{c^{2011}}{a^{2011}}=1+1+1=3\)

*)Xét \(a+b+c=0\Rightarrow\)\(\left\{\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\). Khi đó \(\frac{a^{2011}}{b^{2011}}+\frac{b^{2011}}{c^{2011}}+\frac{c^{2011}}{a^{2011}}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

6 tháng 1 2017

bạn có cần cách giải ko, mình r ết quả = 3 đó

NV
16 tháng 3 2019

a/ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=-7\Rightarrow\left(ab+ac+bc\right)^2=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=49\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(\left(ac\right)^2+\left(ac\right)^2+\left(bc\right)^2\right)=14^2-2.49=98\)

b/ \(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{b^2+c^2}{\left(a^2+b^2+c^2\right)a^2}\right)+y^2\left(\frac{a^2+c^2}{\left(a^2+b^2+c^2\right)b^2}\right)+z^2\left(\frac{a^2+b^2}{\left(a^2+b^2+c^2\right)c^2}\right)=0\)

\(\Leftrightarrow x^2=y^2=z^2=0\) (do \(a;b;c\ne0\))

\(\Rightarrow x=y=z=0\Rightarrow P=0\)

3 tháng 12 2014

uây! giống câu hỏi cua mik

 

3 tháng 12 2014

đừng có chép câu TL của tui nhá cu cÒng 

Điều đó là không tốt đâu thằng đệ à 

Hahahaha!!!

28 tháng 10 2016

Ta có

(a+b+c)^2=0

=>a^2+b^2+c^2+2(ab+bc+ca)=0

Mà ab+bc+ca=0

=>a^2+b^2+c^2=0

=>a=0

b=0

c=0

Thay a=0;b=0;c=0 vào S ta được

S=1^2009+0^2010+1^2011=2

Vậy S=2

3 tháng 2 2016

Bạn ghi đề nhớ để dấu cho đúng nhé.

\(1.\) Cho  \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)  \(\left(1\right)\)

\(CMR:\)  \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

                                     \(----------------------\)

Ta có:

Từ  \(\left(1\right)\)  \(\Rightarrow\)  \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)  

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ca}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+\left(\frac{ab}{b+c}+\frac{ca}{b+c}\right)+\frac{b^2}{c+a}+\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\frac{c^2}{a+b}+\left(\frac{ca}{a+b}+\frac{bc}{a+b}\right)=a+b+c\)

              \(\Leftrightarrow\)  \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

              \(\Leftrightarrow\) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)  \(\left(đpcm\right)\)

 

13 tháng 12 2018

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\Leftrightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)

\(\Leftrightarrow x^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

vì \(a,b,c\ne0\Rightarrow\hept{\begin{cases}\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow x=y=z=0\Rightarrow P=0+\frac{11}{2011}=\frac{11}{2011}\)