K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

BDT

\(x+\dfrac{1}{x}=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\ge2\)

nhân PP vào là ra

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3+2+2+2=9\)

12 tháng 8 2017

Theo BĐT Cauchy:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

17 tháng 7 2017

Áp dụng BĐT AM - GM, ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2+2+2=9\)

Dấu "=" xảy ra khi a = b = c

17 tháng 7 2017

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9\left(a+b+c\right)}{\left(a+b+c\right)}=9\)

Dấu " = " khi a = b = c

30 tháng 3 2017

Cách 2:

Ta có:

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=a\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)

Áp dụng BĐT AM-GM, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}+\dfrac{b}{a}\ge2\\\dfrac{b}{c}+\dfrac{c}{b}\ge2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\end{matrix}\right.\)

=> \(A\ge9\)

P/s: Nhìn hơi dài nhưng trình bày ra thì không quá dài đâu! Ở đây mình làm hơi cẩn thận ::)))

30 tháng 3 2017

Áp dụng Bất đẳng thức Côsi:

\(\left(a+b+c\right)\ge3\sqrt[3]{abc}\)

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Vậy \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(đpcm\right)\)

P/s: Ủa, đề này lớp 8 à? Sao cô mình lại cho bọn mình làm cái này nhỉ? WTF?????

23 tháng 9 2017

a)Theo bất đẳng thức cauchy:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{4}{a+b}.\left(a+b\right)\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Dấu "=" xảy ra khi: \(a=b\)

Ta có điều phải chứng minh

b)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge\dfrac{9}{a+b+c}.\left(a+b+c\right)\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\ge9\)

Dấu "=" xảy ra khi:

\(a=b=c\)

Ta có điều phải chứng minh

4 tháng 8 2017

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

4 tháng 8 2017

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks

15 tháng 5 2017

Giải:

Áp dụng BĐT Cô si cho 3 số dương ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân theo vế 2 BĐT trên ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

15 tháng 5 2017

Nếu đề là \(a,b,c\ge0\) thì làm như sau:

Áp dụng bất đẳng thức Cauchy ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{\left(a+b+c\right)}=9\)

Đẳng thức xảy ra khi a = b = c

\(\Rightarrowđpcm\)

22 tháng 4 2018

Cách khác:

Đặt \(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)

\(A=\left(1+\dfrac{a+b}{a}\right)\left(1+\dfrac{a+b}{b}\right)\)

\(A=\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

\(A=4+2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+1\)

\(A\ge4+2\cdot2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}+1=9\left(AM-GM\right)\left(đpcm\right)\)

22 tháng 4 2018

( 1 + \(\dfrac{1}{a}\))\(\left(1+\dfrac{1}{b}\right)\) ≥ 9

Biến đổi VT Ta có : VT = \(\dfrac{a+1}{a}.\dfrac{b+1}{b}\)

= \(\dfrac{2a+b}{a}.\dfrac{2b+a}{b}\)

=\(\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

= 4 + \(\dfrac{2a}{b}+\dfrac{2b}{a}+\dfrac{b}{a}.\dfrac{a}{b}\)

= 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ( *)

Áp dụng BĐT : \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2( x > 0 ; y > 0) ( ** )

Từ ( * ; **) ⇒ 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ≥ 5 + 4 = 9 ( đpcm )

8 tháng 5 2017

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

=\(1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

= \(3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}+2\sqrt{\dfrac{b}{c}.\dfrac{c}{b}}\)

\(\ge3+2+2+2=9\left(đpcm\right)\)

9 tháng 5 2017

vì a,b,c là các số dương nên ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

nhân hai vế vs nhau, ta có

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

19 tháng 4 2018

a) theo định lý côsi :

\(\dfrac{a}{b}\)+\(\dfrac{b}{a}\)luôn >=2 với mọi a, b , a.b > 0