Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}\)
Tương tự ta có:
\(\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ac}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)
Cộng theo vế ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)
\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ab}}{2abc}\)
\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)
Đẳng thức xảy ra khi \(a=b=c\)
a) Đơn giản, tự chứng minh
b) Cách 1: Áp dụng BĐT câu a: \(VT\ge\left(a^2+ab-b^2\right)+\left(b^2+bc-c^2\right)+\left(c^2+ca-a^2\right)=ab+bc+ca=VP\)(đpcm)
Cách 2:
Ta chứng minh BĐT chặt hơn: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (vì \(a^2+b^2+c^2\ge ab+bc+ca\))
Giả sử \(b=min\left\{a,b,c\right\}\).Bằng phương pháp B-W (Buffalo way) ta phân tích được:
\(VT-VP=\frac{\left(4a^2c+4abc-b^3+3b^2c-bc^2\right)\left(a-b\right)^2+b\left(b^2+bc+c^2\right)\left(a+b-2c\right)^2}{4abc}\ge0\)
P/s: Cách 2 tuy dài nhưng rất hay vì đây là phân tích bằng tay (không cần dùng phần mềm)!
Lời giải:
a)
Xét hiệu \(\frac{a^3}{b}-(a^2+ab-b^2)=(\frac{a^3}{b}-a^2)-(ab-b^2)\)
\(=\frac{a^3-a^2b}{b}-b(a-b)=\frac{a^2(a-b)}{b}-b(a-b)=(a-b)\left(\frac{a^2}{b}-b\right)\)
\(=(a-b).\frac{a^2-b^2}{b}=\frac{(a-b)^2(a+b)}{b}\geq 0, \forall a,b>0\)
Do đó \(\frac{a^3}{b}\geq a^2+ab-b^2\) (đpcm)
Dấu "=" xảy ra khi $a=b$
b)
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{a^3}{b}+ab\geq 2a^2\)
\(\frac{b^3}{c}+bc\geq 2b^2\)
\(\frac{c^3}{a}+ac\geq 2c^2\)
Cộng theo vế:
\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)
Mà cũng theo BĐT Cauchy:
\(a^2+b^2+c^2=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\geq \frac{2ab}{2}+\frac{2bc}{2}+\frac{2ca}{2}=ab+bc+ca\)
\( \Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq 2(ab+bc+ac)-(ab+bc+ac)=ab+bc+ac\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)
Ta cần chứng minh: \(x^2+y^2+z^2\ge3\)
Thật vậy:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
Cộng vế với vế:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;1\right)\) hay \(\left(a;b;c\right)=\left(1;1;1\right)\)
\(\frac{a}{a^2+ab+b^2}+\frac{b}{b^2+bc+c^2}+\frac{c}{c^2+ac+a^2}\)
\(=\frac{a^2}{a^3+a^2b+b^2a}+\frac{b^2}{b^3+b^2c+c^2b}+\frac{c^2}{c^3+c^2a+a^2c}\)
\(\ge\frac{\left(a+b+c\right)^2}{a^3+a^2b+b^2a+b^3+b^2c+c^2b+c^3+c^2a+a^2c}\)
\(=\frac{\left(a+b+c\right)^2}{a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)}\)
\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a+b+c}{a^2+b^2+c^2}\)
Dấu "=" xảy ra khi : \(a=b=c\)