K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

Bạn hỏi tự vẽ hình nhá

a) Kẻ \(ME\perp AD,MF\perp BC,MG\perp AB,MH\perp CD\)

\(MA^2+MC^2=MB^2+MD^2\)( cùng bằng \(ME^2+MG^2+MF^2+MH^2\))

b) Chứng mih tương tự=>kết quả không đổi. 

Ta có: \(MA^2+MC^2=MB^2+MD^2\)(cùng bằng \(ME^2=AE^2+MF^2+CF^2\))

Vậy khi điểm M nằm ngoài hình chữ nhật ABCD thì đẳng thức ở câu a) vẫn đúng.

14 tháng 1 2018

a, Trên AM lấy điểm E sao cho ME = MB

Có : góc BME = góc BCA = 60 độ

=> tam giác EMB đều => EB = MB và góc EMB = 60 độ

Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ

Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ

=> góc ABE = góc CBM

=> tam giác AEB = tam giác CMB (c.g.c)

=> AE = CM

=> AM = AE + EM = CM+BM

14 tháng 1 2018

b, Theo câu a có tam giác AEB = tam giác CMB

=> góc EAB = góc MCB

=> tam giác MDC đồng dạng tam giác MBA (g.g)

=> MC/MA = MD/MB

=> MD.MA=MB.MC

Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1

26 tháng 7 2017

Qua điểm M, kẻ đoạn thẳng HK vuông góc với AB và CD (H thuộc AB và K thuộc CD)

=> AHKD và HBCK là hcn

=> AH = DK và HB = KC

ABCD là hv \(\Rightarrow BM+MD=BD=\sqrt{2}AB=\sqrt{2}\)

\(\Delta HAM\) vuông tại H \(\Rightarrow MA^2=AH^2+HM^2\left(ptg\right)=DK^2+HM^2\)

\(\Delta HBM\) vuông tại H \(\Rightarrow MB^2=HM^2+HB^2\left(ptg\right)\)

\(\Delta KMD\) vuông tại K \(\Rightarrow MD^2=KM^2+KD^2\left(ptg\right)\)

\(\Delta KMC\) vuông tại K \(\Rightarrow MC^2=KC^2+MK^2\left(ptg\right)=HB^2+MK^2\)

Áp dụng BĐT Cauchy Shwarz, ta có:

\(\left(1+1\right)\left(MB^2+MD^2\right)\ge\left(MB+MD\right)^2\)

\(\Rightarrow MB^2+MD^2\ge\dfrac{\left(MB+MD\right)^2}{2}=\dfrac{\left(\sqrt{2}\right)^2}{2}=1\)

Ta có:

\(MA^2+MD^2+MB^2+MC^2\)

\(=\left(DK^2+HM^2\right)+\left(HM^2+HB^2\right)+\left(KM^2+KD^2\right)+\left(HB^2+MK^2\right)\)

\(=2\left(DK^2+KM^2\right)+2\left(HM^2+HB^2\right)\)

\(=2\left(MD^2+MB^2\right)\)

\(\ge2\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi \(MA=MB=MC=MD=\dfrac{\sqrt{2}}{2}\)

11 tháng 12 2015

Hướng dẫn thôi nha
Câu a) : Vẽ MH vuông góc với AC, MK vuông góc với BD
Ta có MA x MC = MH x AC = 2 x R x MH
Ta CM \(^{ }MA^4\)\(^{ }MC^4\)\(^{ }16R^4\)\(8^{ }R^2MH^2\)
Tương tự MB^4 + MD^4 = 16R^4 - 8R^2 x HK^2
Kq bằng \(^{ }24R^4\)
Câu b) áp dụng cô si cho 4 số kq bằng \(^{ }6R^4\)
Tick cho mình nhaaaaaaaaa :*

16 tháng 10 2021

khó thế 

mới học lớp 3 bài này khó quá anh chị cho bài về bảng nhân đi ạ 000000

19 tháng 11 2016

A B C D M

a/ Áp dụng BĐT ba điểm : 

\(AM+MB\ge AB\) ; \(BM+MC\ge BC\); \(CM+MD\ge CD\) ; \(DM+MA\ge DA\)

Cộng theo vế : \(2\left(MA+MB+MC+MD\right)\ge AB+BC+CD+DA\)

\(\Leftrightarrow MA+MB+MC+MD\ge\frac{AB+BC+CD+DA}{2}\)

Đẳng thức xảy ra khi M là giao điểm của AC và BD

b/ Ta cũng áp dụng BĐT ba điểm :

\(AM+MC\ge AC\) ; \(BM+MD\ge BD\)

Cộng theo vế : \(MA+MB+MC+MD\ge AC+BD\)

Đẳng thức xảy ra khi M là giao điểm của AC và BD

4 tháng 2 2019

C M A B D Q P K O'

a) Bằng các góc nội tiếp, ta có: ^BCD = ^BAD = ^BAQ = ^BPQ và ^DBC = ^DAP = ^PAQ = ^QBP

Do đó: \(\Delta\)BCD ~ \(\Delta\)BPQ (g.g) (đpcm).

b) Theo câu a: ^BCD = ^BPQ hay ^BCK = ^BPK => 4 điểm K,P,C,B cùng thuộc 1 đường tròn

=> Đường tròn (KCP) đi qua B. Mà B cố định nên ta có ĐPCM.

24 tháng 4 2020

a) ta có: \(\widehat{BCD}=\widehat{BAD}\)(cùng chắn cung BD)

                            \(=\widehat{BPQ}\)(vì cùng chắn cung BQ)

Tương tự \(\widehat{BDC}=\widehat{BAC}\)(cùng chắn cung BC)

                             \(=\widehat{BQP}\)(cùng bù \(\widehat{BAP}\))

=> \(\Delta BCD~\Delta BPQ\left(gg\right)\)

b) Vì \(\widehat{BCD}=\widehat{BPQ}\Rightarrow\widehat{BPK}=\widehat{BCK}\)

=> Tứ giác BCPK nội tiếp

=> Đường tròn ngoại tiếp \(\Delta\)PCK đi qua B cố định

19 tháng 7 2019

a.Tam giác ADC vuông tại D :

\(AC=\sqrt{AD^2+CD^2}=\sqrt{8^2+15^2}=17\)(cm)

b.Xét tam giác ACD vuông tại D

Theo hệ thức lượng ta có:

DM.AC=AD.DC

DM=\(\frac{8\cdot15}{17}=\frac{120}{17}\)(cm)

c.Ta thấy tam giác ANM ~ tam giác INB

mà tam giác INB ~  tam giác ICM

vậy tam giác ANM ~ tam giác ICM

từ đó ta có được 

MN.MI=CM.AM

Mặt khác áp dụng htl trong tam giác ADC ta có: CM.AM=DI2

Vậy MN.MI=DI2

@.@