Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/b=b/c=c/d=d/a áp dụng tính chất dãy tỉ số bằng nhau ta được:
a/b=b/c=c/d=d/a=(a+b+c+d)/(a+b+c+d)=1
Do đó: a/b=1 suy ra a=b (1) ; b/c=1 suy ra b=c (2) ; c/d=1 suy ra c=d (3) ; d/a=1 suy ra d=a (4)
Từ (1),(2),(3),(4) ta được: a=b=c=d
Suy ra:P=(2a-a)/(a+a)+(2a-a)/(a+a)+(2a-a)/(a+a)+(2a+a)/(a+a)
=4.a/2a=4.1/2=2
Vậy P=2
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ (1) và (2) => ĐPCM
b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => ĐPCM
Giải: Ta có :
\(\frac{a+b+c-2011d}{d}=\frac{b+c+d-2011a}{a}=\frac{c+d+a-2011b}{b}=\frac{d+a+b-2011c}{c}\)
=> \(\frac{a+b+c}{d}-2011=\frac{b+c+d}{a}-2011=\frac{c+d+a}{b}-2011=\frac{d+a+b}{c}-2011\)
=> \(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}\)
=> \(\frac{a+b+c}{d}+1=\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1\)
=> \(\frac{a+b+c+d}{d}=\frac{b+c+d+a}{a}=\frac{c+d+a+b}{b}=\frac{d+a+b+c}{c}\)
TH1: a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
khi đó, ta có : S = \(\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{d+a}{-\left(a+d\right)}\)
= \(-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
= -4
TH2 : a + b + c + d \(\ne\)0
=> a = b = c = d
khi đó, ta có : S = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}\)
= 1 + 1 + 1 + 1
= 4
Ta có :
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\)\(\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
Ta thấy các tử bằng nhau suy ra các mẫu bằng nhau
\(\Rightarrow\)\(b+c+d=c+d+a=d+a+b=a+b+c\)
\(\Rightarrow\)\(a=b=c=d\)
\(\Rightarrow\)\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{b+a}+\frac{d+a}{b+c}=1+1+1+1=4\)
Đề bị nhầm đúng ko bạn ^^
Hì
Không spam như đừng cmt spam AD :
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha