Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)
ta có; a/b = c/d
suy ra a/b - 1=c/d-1
a-b/b=c-d/d(đpcm)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\
cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)
Ta có \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
c) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
d) \(\frac{a}{b}=\frac{c}{d}\Rightarrow1:\frac{a}{b}=1:\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\Rightarrow1:\frac{a-b}{a}=1:\frac{c-d}{c}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt `a/b=c/d =k ->a=bk, c=dk`
`a,`
`(a+b)/b=(bk +b)/b=(b (k+1) )/b=k+1`
`(c+d)/d=(dk +d)/d=(d (k+1) )/d=k+1`
`-> (a+b)/b=(c+d)/d`
`b,`
`a/(a+b)=(bk)/(bk+b)=(bk)/(b(k+1) )=k/(k+1)`
`c/(c+d)=(dk)/(dk+d)=(dk)/(d(k+1) ) = k/(k+1)`
`-> a/(a+b)=c/(c+d)`
`c,`
`(a-b)/b=(bk-b)/b=(b(k-1) )/b=k-1`
`(c-d)/d=(dk-d)/d=(d(k-1) )/d=k-1`
`-> (a-b)/b=(c-d)/d`
`d,`
`a/(a-b) =(bk)/(bk-b)=(bk)/(b(k-1) )=k/(k-1)`
`c/(c-d)=(dk)/(dk-d)=(dk)/(d(k-1) )=k/(k-1)`
`-> a/(a-b)=c/(c-d)`
a) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a}{b}\)
Bài 2: ta thấy A và B ở vị trí trong cùng phía , A + B = 180 độ =>a//b(1)
Ta lại thấy B , C ở vị trí đồng vị , B=C=70 độ =>b//c(2)
Từ 1,2 =>a//b//c
tự vẽ hình
a) xét tam giác ABD và tam giác AED có:
AB=AE (gt)
góc A1 = góc A2 ( AD là p/giác của góc A)
AD chung
=> tam giác ABD = tam giác AED
câu d) mới hok hồi sáng giờ mk chưa bít vận dụng hết hì để xem lại bài đã mk giải cho
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(1\right)\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3+b^3}{c^3+d^3}\\ \Rightarrow\dfrac{a^3+b^3}{\left(a+b\right)^3}=\dfrac{c^3+d^3}{\left(c+d\right)^3}\)