K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2021

Đề bài sai

Với mọi số thực a;b;c ta luôn có:

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Mà theo giả thiết thì: \(3.13< 7^2\) (vô lý)

8 tháng 8 2017

*) Tìm GTNN của \(A=a^2+b^2+c^2\)

Ta có :\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)(Bunhiacopxki)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

*) Tìm GTLN của \(B=ac+bc+ac\)

Ta có  \(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3ac+3bc\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{25}{3}\)

13 tháng 12 2017

ko biet

13 tháng 12 2017

\(\hept{\begin{cases}b+c+d=7-a\\b^2+b^2+d^2=13-a^2\end{cases}}\)(1)

Ta có:

\(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\)

Thế (1) vô ta được

\(\left(7-a\right)^2\le3\left(13-a^2\right)\)

\(\Leftrightarrow1\le a\le\frac{5}{2}\)

2 tháng 10 2021

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

2 tháng 10 2021

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)