\(\frac{1}{\left(a+1\right)^2+b^2+1}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Tìm GTLN ko phải tìm GTNN

Ta có:  \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\) (*)

Lại có: \(\left(a+1\right)^2+b^2+1=a^2+b^2+2a+2\ge2ab+2a+2=2\left(ab+a+1\right)\)

\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+1}\le\frac{1}{2\left(ab+a+1\right)}\) tương tự ta có:

\(\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)};\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\)

Cộng theo vế ta có: \(P\le\frac{1}{2\left(ab+a+1\right)}+\frac{1}{2\left(bc+b+1\right)}+\frac{1}{2\left(ca+c+1\right)}\)

\(=\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\) theo (*)

Dấu "=" khi a=b=c=1

1 tháng 1 2018

ta có A=\(\frac{1}{a^2+2a+2+b^2}+\frac{1}{b^2+2b+2+c^2}+\frac{1}{c^2+2c+2+a^2}\)

Áp dụng bđt cô si, ta có \(a^2+b^2\ge2ab\) =>\(\frac{1}{a^2+b^2+2a+2}\le\frac{1}{2ab+2a+2}\)

tương tự, rồi + vào, ta có 

\(\le\frac{1}{2}\left(\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\right)\)

mà với abc=1 thì ta luôn chứng minh được \(\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}=1\)

=> A <= 1/2 (ĐPCM)

dấu = xảy ra <=> a=b=c=1

^_^

29 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\left(a+b+c\right)\left(a+a^2b+\frac{1}{c}\right)\ge\left(ab+a+1\right)^2\)

Mà \(\left(a+b+c\right)\left(a+a^2b+\frac{1}{c}\right)=\left(a+b+c\right)\left(a+a^2b+ab\right)\)

\(\Rightarrow\frac{a}{\left(ab+a+1\right)^2}\ge\frac{a}{\left(a+b+c\right)\left(a+a^2b+ab\right)}=\frac{1}{\left(a+b+c\right)\left(1+ab+b\right)}\)

Tương tự rồi cộng theo vế 3 BĐT ta có:

\(VT\ge\frac{1}{a+b+c}\left(Σ\frac{1}{1+ab+b}\right)=\frac{1}{a+b+c}\left(abc=1\right)\)

Đẳng thức xảy ra khi \(a=b=c=1\)

nhầm lẫn 1 số chỗ nên giờ mới ra,mong bn thông cảm

ta có:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)

đặt \(P=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)

áp dụng bunhia ta có:

\(P\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2=1\)

\(\Rightarrow P\ge\frac{1}{a+b+c}\)

14 tháng 5 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2\left(b+c\right)}+\frac{b+c}{4}\ge2\sqrt{\frac{1}{a^2\left(b+c\right)}\cdot\frac{b+c}{4}}=2\cdot\frac{1}{2a}=\frac{1}{a}\)

Tuong tu cho 2 BDT con lai ta cung co

\(\frac{1}{b^2\left(a+c\right)}+\frac{a+c}{4}\ge\frac{1}{b};\frac{1}{c^2\left(a+b\right)}+\frac{a+b}{4}\ge\frac{1}{c}\)

Cong theo ve cac BDT tren ta co

\(VT+\frac{2\left(a+b+c\right)}{4}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow VT+\frac{a+b+c}{2}\ge3\sqrt[3]{\frac{1}{abc}}=3\left(abc=1\right)\)

\(\Rightarrow VT+\frac{3\sqrt[3]{abc}}{2}\ge3\Rightarrow VT+\frac{3}{2}\ge3\Rightarrow VT\ge\frac{3}{2}\)

Dang thuc xay ra khi \(a=b=c=1\)

5 tháng 2 2020

Áp dụng BĐT Cô-si cho 3 số dương, ta có :

\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(a+c\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\)

Cần chứng minh : \(\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)^2}\)

hay \(8\left(a+b+c\right)^6\ge729abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Thật vậy, ta có : \(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)

\(8\left(a+b+c\right)^3=\left(2\left(a+b+c\right)\right)^3=\left(a+b+b+c+a+c\right)^3\)

\(\ge\left(3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\right)^3=27\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Nhân từng vế 2 bất đẳng thức trên, ta được đpcm

Dấu "=" xảy ra khi a = b = c 

Vậy ...

5 tháng 2 2020

2. Áp dụng BĐT Cô-si cho 3 số không âm, ta có : 

\(B\ge3\sqrt[3]{\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(a^3+c^3+1\right)}}\)

Ta có : \(a^3+b^3+1\ge3\sqrt[3]{a^3b^3}=3ab\Rightarrow\sqrt{a^3+b^3+1}\ge\sqrt{3ab}\)

Tương tự : ....

\(\Rightarrow\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(c^3+a^3+1\right)}\ge\sqrt{27a^2b^2c^2}=\sqrt{27}\)

\(\Rightarrow B\ge3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

Vậy GTNN của B là \(3\sqrt{3}\)khi a = b = c = 1

27 tháng 5 2020

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

27 tháng 5 2020

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)