Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)
\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)
\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)
a + b +c =0 => ( a +b + c)^2 =0 => a^2 +b^2 +c^2 + 2ab +2bc + 2ac = 0
=> 1 + 2(ab + bc +ac) = 0 => 2(ab +bc +ac) = -1 ==> ab + bc +ac = -1/2
( ab + bc+ac)^2 = 1/4 => a^2.b^2 + b^2.c^2 + c^2.a^2 + 2ab^2.c +2ab.c^2 + 2 a^2.b.c = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc ( a+ b+ c) = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc . 0 = 1/4
=> 2( a^2 . b^2 + + b^2 . c^2 + c^2 . a^2 ) = 2.1/4 = 1/2
=> 2a^2 . b^2 + 2 b^2 . c^2 + 2c^2 . a^2 = 1/2
( a^2 + b^2 + c^2 )^2 = 1
=> a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2 c^2 . a^2 = 1
=> a^4 + b^ 4 + c^4 + 1/2 = 1
=> a^4 + b^4 + c^4 = 1/2
(a+b+c)2 = 0
<=> a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
<=> 2ab + 2bc + 2ac = -1
<=> ab + bc + ac = -1/2
<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2abc2 + 2a2bc = 1/4
<=> a2b2 + b2c2 + c2a2 + 2abc(a+b+c) = 1/4
<=> a2b2 + b2c2 + c2a2 = 1/4
(a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 1
<=> a4 + b4 + c4 + 2.1/4 = 1
<=> a4 + b4 + c4 = 1 - 1/2 = 1/2.
Vậy M = 1/2
\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)
a + b +c =0 => ( a +b + c)^2 =0 => a^2 +b^2 +c^2 + 2ab +2bc + 2ac = 0
=> 1 + 2(ab + bc +ac) = 0 => 2(ab +bc +ac) = -1 ==> ab + bc +ac = -1/2
( ab + bc+ac)^2 = 1/4 => a^2.b^2 + b^2.c^2 + c^2.a^2 + 2ab^2.c +2ab.c^2 + 2 a^2.b.c = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc ( a+ b+ c) = 1/4
=> a^2 . b^2 + b^2 . c^2 + c^2 . a^2 + 2abc . 0 = 1/4
=> 2( a^2 . b^2 + + b^2 . c^2 + c^2 . a^2 ) = 2.1/4 = 1/2
=> 2a^2 . b^2 + 2 b^2 . c^2 + 2c^2 . a^2 = 1/2
( a^2 + b^2 + c^2 )^2 = 1
=> a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2 c^2 . a^2 = 1
=> a^4 + b^ 4 + c^4 + 1/2 = 1
=> a^4 + b^4 + c^4 = 1/2
Có: \(a^2+b^2+c^2=1\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Lại có: \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow2\left(ab+bc+ac\right)=-1\)
\(\Rightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ac\right)^2=\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}-2abc\left(a+b+c\right)\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}\)
Vậy: \(a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
Ta có a + b + c = 0
=> a + b = -c
=> (a + b)2 = (-c)2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = -2ab
=> (a2 + b2 - c2)2 = (-2ab)2
=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2
Khi đó a2 + b2 + c2 = 14
<=> (a2 + b2 + c2)2 = 142
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196
=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)
=> 2(a4 + b4 + c4) = 196
=> a4 + b4 + c4 = 98
\(a+b+c=0=>a+b=-c=>\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)
\(=>a^2+2ab+b^2-c^2=0=>a^2+b^2-c^2=-2ab\)\(=>\left(a^2+b^2-c^2\right)^2=\left(-2ab\right)^2\)
\(=>a^4+b^4+c^4+2a^2b^2-2b^2c^2-2a^2c^2=4a^2b^2\)
\(=>a^4+b^4+c^4=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2\right)\)\(=2a^2b^2+2b^2c^2+2a^2c^2\)
\(=>2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=\left(a^2+b^2+c^2\right)^2=1^2\)\(=1\)
\(=>M=a^4+b^4+c^4=\frac{1}{2}\)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+2ab+b^2-c^2=0\)
\(\Rightarrow a^2+b^2-c^2=-2ab\)
\(\Rightarrow\left(a^2+b^2-c^2\right)^2=\left(-2ab\right)^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2-2b^2c^2-2a^2c^2=4a^2b^2\)
\(\Rightarrow a^4+b^4+c^4=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2\right)=2a^2b^2+2b^2c^2+2a^2c^2\)\(\Rightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=\left(a^2+b^2+c^2\right)^2=1^2\)\(\Rightarrow2\left(a^4+b^4+c^4\right)=1\)
\(\Rightarrow a^4+b^4+c^4=\dfrac{1}{2}\)
Vậy \(a^4+b^4+c^4=\dfrac{1}{2}\)
\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)
\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)
\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)