Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB/AC=5/7
=>HB/HC=(5/7)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
AH^2=HB*HC
=>25k*49k=15^2
=>k^2=9/49
=>k=3/7
=>HB=25*3/7=75/7cm; HC=49*3/7=21cm
\(HB.HC=15^2=225\)
Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
nên \(\dfrac{HB}{HC}=\dfrac{25}{49}\)
hay \(HB=\dfrac{25}{49}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2=15^2:\dfrac{25}{49}=441\)
\(\Leftrightarrow HC=21\left(cm\right)\)
\(\Leftrightarrow HB=\dfrac{75}{7}\left(cm\right)\)
AB/AC=5/7
nên HB/HC=25/49
=>HB=25/49HC
Xét ΔBAC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{49}=15^2=225\)
\(\Leftrightarrow HC=21\left(cm\right)\)
\(HB=\dfrac{25}{49}HC=\dfrac{75}{7}\left(cm\right)\)
Lời giải:
Từ \(\frac{AB}{AC}=\frac{5}{7}\Leftrightarrow \frac{AB}{5}=\frac{AC}{7}\).
Đặt \(\frac{AB}{5}=\frac{AC}{7}=a\Rightarrow AB=5a; AC=7a\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{(5a)^2+(7a)^2}=\sqrt{74}a\)
\(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{5a.7a}{\sqrt{74}a}\)
\(\Leftrightarrow 15=\frac{35a}{\sqrt{74}}\Rightarrow a=\frac{3\sqrt{74}}{7}\) (cm)
\(\Rightarrow \left\{\begin{matrix} AB=5a=\frac{15\sqrt{74}}{7}\\ AC=3\sqrt{74}\end{matrix}\right.\)
Áp dụng định lý Pitago cho các tam giác vuông $AHB, AHC$:
\(HB=\sqrt{AB^2-AH^2}=\sqrt{(\frac{15\sqrt{74}}{7})^2-15^2}=\frac{75}{7}\) (cm)
\(HC=\sqrt{AC^2-AH^2}=\sqrt{(3\sqrt{74})^2-15^2}=21\) (cm)
A B C H
Đặt \(AB=x\left(cm\right)\left(x>0\right)\)
\(AC=1,4x\left(cm\right)\)
Trong \(\Delta ABC\) có: \(\widehat{A}=90^0\left(gt\right)\)
AH là đường cao ứng với BC (gt)
\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{x^2}+\dfrac{1}{1,96x^2}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow49x^2=16650\\ \Rightarrow x^2=\dfrac{16650}{49}\\ \Rightarrow x=18,43\)
Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHB\)
\(\Rightarrow HB^2=\sqrt{AB^2-AH^2}=\sqrt{18,33^2-15^2}=10,54\left(cm\right)\)
Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHC\)
\(\Rightarrow HC^2=\sqrt{AC^2-AH^2}=\sqrt{\left(1,4\cdot18,33\right)^2-15^2}=20,82\left(cm\right)\)
Áp dụng hệ thức trong tam giác vuông có:
\(AH^2=HB.HC\Leftrightarrow225=HB.HC\)
\(AB^2=BH.BC\)
\(AC^2=CH.BC\)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{BH}{CH}=\dfrac{25}{49}\)
\(\Rightarrow BH=\dfrac{25CH}{49}\)
Có \(HB.HC=225\)
\(\Leftrightarrow\dfrac{25HC^2}{49}=225\)\(\Leftrightarrow HC=21\) (cm)
\(\Rightarrow HB=\dfrac{25.21}{49}=\dfrac{75}{7}\) (cm)
Vậy....
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
nên \(\dfrac{AB}{5}=\dfrac{AC}{7}\)
Đặt \(\dfrac{AB}{5}=\dfrac{AC}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k\\AC=7k\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(5k\right)^2}+\dfrac{1}{\left(7k^2\right)}\)
\(\Leftrightarrow k=\dfrac{3\sqrt{74}}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k=\dfrac{5\cdot3\sqrt{74}}{7}=\dfrac{15\sqrt{74}}{7}\\AC=7k=\dfrac{7\cdot3\sqrt{74}}{7}=3\sqrt{74}\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=\left(\dfrac{15\sqrt{74}}{7}\right)^2-15^2=\dfrac{5625}{49}\)
hay \(HB=\dfrac{75}{7}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=\left(3\sqrt{74}\right)^2-15^2=441\)
hay HC=21(cm)