Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ
Ta có :
ab - ac + bc - c2 = -1
\(\Leftrightarrow\)a . ( b - c ) + c . ( b - c ) = -1
\(\Leftrightarrow\)( b - c ) . ( a + c ) = -1
\(\Leftrightarrow\)b - c và a + c phải khác dấu tức là b - c = - ( a + c )
\(\Leftrightarrow\)b - c = -a - c
\(\Leftrightarrow\)b = -a
Vậy a và b là hai số đối nhau
ab -ac + bc- c2 = -1
=>a.(b-c)+c.(b-c)=-1
=>(b-c)(a+c)=-1=1.(-1)=(-1).1
=>b-c=1 và a+c=-1 hoặc b-c=-1 và a+c=1
=>*b=1+c và a=-1-c=-(1+c)
=> a và b là 2 số đối nhau
* b=-1+c và a=1-c=-(-1+c)
=>a và b là 2 số đối nhau
Vậy a và b là 2 số đối nhau
b)
Ta có: \(ab-ac+bc-c^2=-1\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1\) (1)
Vì a, b, c nguyên
=> a+c nguyên và b-c nguyên
Từ đó suy ra có hai trường hợp xảy ra
TH1: a+c=1 và b-c=-1 => a+b =0 => a, b đối nhau
TH2: a+c=-1 và b-c=1 => a+b =0 => a, b đối nhau
Vậy a, b đối nhau
Ta có :
ab - ac + bc - c2 = -1
\(\Leftrightarrow\)a . ( b - c ) + c . ( b - c ) = -1
\(\Leftrightarrow\)( a + c ) . ( b - c ) = -1
\(\Leftrightarrow\)b - c và a + c phải khác dấu tức là b - c = - ( a + b )
\(\Leftrightarrow\)b - c = -a - c
\(\Leftrightarrow\)b = -a
Vậy a và b là hai số đối nhau
Từ a+b=c +d suy ra d = a+b-c
Vì tích ab là số liền sau của tích cd nên ab-cd = 1
\(\Leftrightarrow\)ab - c.(a+b-c)=1
\(\Leftrightarrow\)ab - ac - bc + c2 = 1
\(\Leftrightarrow\)a.(b-c)-c.(b-c)=1
\(\Leftrightarrow\)(b-c).(a-c)=1
\(\Rightarrow\)a-c=b-c (vì cùng bằng 1 hoặc -1 )
\(\Rightarrow\)a=b
mình nha
ab-ac+bc-c2=-1
a.[b-c]+c[b-c]=-1
[a+c].[b-c]=-1
=>nếu a+c=1 thì b-c=-1
=>a=1-c
b=c-1
=>a và b là 2 số đối nhau
nếu a+c=1 thì b-c=-1
=>a=1-c thi b=c-1
=>a và b là 2 số đối nhau
Vậy a và b là 2 số đối nhau
ab-ac+bc-c^2=-1
<=> b(a+c)-c(a+c)=-1
<=> (b-c)(a+c)=-1
Vì: a,b,c E Z=> b-c;a+c E Z
=> -1=-1.1=1.-1
+) (b-c)(a+c)=-1.1
=> a+c+b-c=0=>a+b=0 => a và b là 2 số đối nhau
+) (b-c)(a+c)=1.-1
=> b-c+a+c=0=>b+a=0=> a và b là 2 số đối nhau
Vậy: a và b là 2 số đối nhau (đpcm)
ab- ac + bc - c^2 = -1
a( b-c) + c (b -c) = -1
(a+c)(b-c) = -1
=> (a+c) và (b-c) thuộc Ư(-1)={ 1 ; -1}
TH1 a+ c = 1, b - c = -1
a = 1 - c
b = - 1 + c = - ( 1-c) = - a
a và b đối nhau
TH 2 a + c = -1 và b -c =1
a = -1 - c = - ( 1+c) = -b
b = 1 + c
=> a và b đối nhau
ab-ac+bc-c2=-1
=> a.(b-c)+c.(b-c)=-1
=> (b-c).(a+c)=-1
=> (b-c).(a+c)=-1.1=1.(-1)
+) b-c=-1; a+c=1
=> (b-c)+(a+c) = b-c+a+c = a + b = -1 + 1 = 0
=> a và b đối nhau
+) b-c=1; a+c=-1
=> (b-c)+(a+c) = b-c+a+c = a + b = 1 + (-1) = 0
=> a và b đối nhau Vậy 2 số a và b đối nhau.