Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(luôn đúng)
b. Áp dụng BĐT \(x^2+y^2\ge2xy\)
\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)
c. Tương tự câu b
Áp dụng BĐT Cô si ta có
i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)
\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
k. Tương tự câu i
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
a) Giả sử:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )
=> đpcm
b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)
Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)
Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)
c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)
\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\))
\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)
Dấu ''='' xảy ra khi \(3a=5b=12:2\)
\(\Leftrightarrow a=2;b=\frac{6}{5}\)
Lời giải:
TH1 : Nếu \(a+b\geq 4\);
\(5ab+5bc+5ac=5ab+5(a+b)(3-a-b)=15(a+b)-5(a^2+b^2)-5ab\)
\(=15(a+b)-\frac{5}{2}(a+b)^2-\frac{5}{2}(a^2+b^2)\leq 15(a+b)-\frac{5}{2}(a+b)^2-\frac{5}{4}(a+b)^2\)
\(\Leftrightarrow 5(ab+bc+ac)\leq 15(a+b)-\frac{15}{4}(a+b)^2\leq 15(a+b)-15(a+b)=0\)
Mà \(3(abc+4)\geq 0\) vì \(abc\geq -4\)
Do đó ta có đpcm.
TH2: Nếu \(a+b\leq 4\)
Không mất tổng quát giả sử \(c=\min(a,b,c)\Rightarrow c\leq 1\Rightarrow a+b\geq 2\)
Đặt \(\left\{\begin{matrix} a+b=x\\ ab=y\end{matrix}\right.\)
Khi đó, \(c=3-(a+b)=3-x\). Bài toán chuyển về chứng minh:
\(3y(3-x)+12\geq 5y+5x(3-x)\)
\(\Leftrightarrow 5x^2+4y+12\geq 3xy+15x\)
\(\Leftrightarrow 3y(4-x)+3(x-1)(x-4)+2(x^2-4y)\geq 0\)
\(\Leftrightarrow 3(4-x)(y+1-x)+2(x^2-4y)\geq 0\)
\(\Leftrightarrow 3(4-a-b)(a-1)(b-1)+2(a-b)^2\geq 0\) \((1)\)
Đặt \(\left\{\begin{matrix} a-1=m\\ b-1=n\end{matrix}\right.\)
\((1)\Leftrightarrow 3(2-m-n)mn+2(m-n)^2\geq 0\)
\(\Leftrightarrow 2(m^2+n^2)+2mn-3mn(m+n)\geq 0\) \((\star)\)
Thấy rằng, \(m+n=a+b-2\geq 0\)
\(\bullet\)Nếu \(mn\leq 0\Rightarrow 3mn(m+n)\leq 0\)
\(\Rightarrow 2(m^2+n^2)+2mn-3mn(m+n)\geq 2(m^2+n^2)+2mn=m^2+n^2+(m+n)^2\geq 0\) , tức \((\star)\) đúng
\(\bullet\) Nếu \(mn\geq 0\)
Vì \(a+b\leq 4\Rightarrow m+n\leq 2\Rightarrow mn(m+n)\leq 2mn\)
Do đó, \(2(m^2+n^2)+2mn-3mn(m+n)\geq 2(m^2+n^2)+2mn-6mn=2(m-n)^2\geq 0\)
Tức \((\star)\) đúng.
Vậy \((\star)\) đúng, ta có đpcm.
Dấu bằng xảy ra khi \((a,b,c)=(2,2,-1)\) và hoán vị.
T5/483 Toán tuổi thơ số 483-9/2017, ngại lật báo quá ko biết nó có đáp án k nữa .-.
*)Xét \(ab+bc+ca<0\) hiển nhiên đúng
*)Ta cần chứng minh \(ab+bc+ca\ge 0\)
Đặt \(\left\{{}\begin{matrix}a+b+c=3u\\ab+bc+ca=3v^2\\abc=w^3\end{matrix}\right.\). Ta c/m 1 BĐT tuyến tính của \(w^3\)
Xảy ra các trường hợp sau đây
+)\(w^3=4\) *Đúng*
+)\(b=a;c=3-2a\). Khi đó \(a^2(3-2a)\geq-4\)
\(\Leftrightarrow (a-2)(2a^2+a+2)\leq0\)
Với \(a\le 2\) thì ta cần cm \(3a^2(3-2a)+12\geq5(a^2+2a(3-2a))\)
\(\Leftrightarrow (a-1)^2(2-a)\geq0\)
\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)
Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)
\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)
b.
\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)
\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)
\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)
- TH1: nếu \(a+b+c\ge4\)
Ta có: \(ab+bc+ca=4-abc\le4\)
\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)
(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)
- TH2: nếu \(3\le a+b+c< 4\)
Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)
\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)
Áp dụng BĐT Schur:
\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)
\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)
(Dấu "=" xảy ra khi \(a=b=c=1\))
\(\Leftrightarrow\frac{3}{2}\left(a+c\right)^2+\frac{\left(a-c-2b\right)^2}{2}\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b = -c
Vậy..
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab-2bc-2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=-c\)