Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $a+b+c=1$ nên:
\(\text{VT}=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\right)\)
\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)+\frac{3}{4}\)
\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right)+\frac{3}{4}\)
\(=(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab})+(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc})+(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ac})+\frac{3}{4}\)
\(\geq 2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}=\frac{15}{4}\) (áp dụng BĐT AM-GM)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
theo de bai ta co \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\) suy ra ab+bc+ac=abc
\(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ac}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)
nên vt =\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(c+b\right)}\)
nx \(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\) >= \(\dfrac{3a}{4}\)
ttu vt>= \(\dfrac{3\left(a+b+c\right)}{4}-\left(\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{a+b}{8}+\dfrac{b+c}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\right)\) =\(\dfrac{a+b+c}{4}\)
dau = say ra a=b=c=3
Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Dự đoán điểm rơi sẽ có 1 số bằng 0.
Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)
do đó \(ab+bc+ca\ge ab\) và \(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)
BDT cần chứng minh tương đương
\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)
BĐT trên hiển nhiên đúng theo AM-GM.
Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )
\(1\le a,b,c\le2\)
\(\Rightarrow1-b\le0\)\(\Rightarrow a\left(1-b\right)\le0\Rightarrow a-ab\le0\Rightarrow4+a-ab\le4\)
\(\Rightarrow\dfrac{1}{4+a-ab}\ge\dfrac{1}{4}\) tương tự rồi cộng các BĐT vế theo vế ta được
\(\Rightarrow\dfrac{1}{4+a-ab}+\dfrac{1}{4+b-bc}+\dfrac{1}{4+c-ca}\ge\dfrac{3}{4}\)
ta c.m \(\dfrac{3}{4}\ge\dfrac{3}{3+abc}\)\(\Rightarrow\dfrac{1}{4}\ge\dfrac{1}{3+abc}\Rightarrow3+abc\ge4\Rightarrow abc\ge1\)
BĐT cuối luôn đúng do \(a,b,c\ge1\)