K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(\frac{2005a}{ab+2005a+2005}+\frac{b}{bc+b+2005}+\frac{c}{ac+c+1}\)

\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)(vì abc=2005)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+1+c}=1\)

5 tháng 12 2016

Thau abc = 2005 vào đề bài ta có:

N = abc.a/ab+abc.a+abc + b/bc+b+abc + c/ac+c+1

N = a^2bc/ab(1+ac+c) + b/b(c+1+ac) + c/ac+c+1

N = ac/1+ac+c + 1/(c+1+ac) + c/ac+c+1

N = ac+1+c/ac+1+c = 1

=> đpcm

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu a:

\(a+b+c=0\Rightarrow a=-b-c\)

\(\Rightarrow a^2-b^2-c^2=(-b-c)^2-b^2-c^2=(b+c)^2-b^2-c^2\)

\(=2bc\)

\(\Rightarrow \frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\). Hoàn toàn tương tự với những phân thức còn lại:

\(\Rightarrow M=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

\(\Rightarrow M=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy giá trị của biểu thức M không phụ thuộc vào biến $a,b,c$

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu b:

Thay $2005=abc$ ta có:

\(N=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ab.ac}{ab(1+ac+c)}+\frac{b}{b(c+1+ac)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{1+ac+c}=1\)

Vậy giá trị của biểu thức $N$ không phụ thuộc vào giá trị biến $a,b,c$

(đpcm)

20 tháng 3 2018

\(P=\frac{a^3b^2c^2}{ab+a^2bc+abc}+\frac{ab^2c}{bc+b+abc}+\frac{abc^2}{ac+c+1}\)

\(=\frac{ }{ab\left(1+ac+c\right)}+\frac{ }{b\left(c+1+ac\right)}+\frac{ }{ac+c+1}\)

6 tháng 2 2018

Ta có: \(M=\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)

Thế: abc = 2010 ta được:

\(M=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{ab}{ab\left(c+1+ac\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(\Leftrightarrow\frac{a^2bc+ab+abc}{ab\left(1+ac+c\right)}=\frac{ab\left(ac+1+c\right)}{ab\left(1+ac+c\right)}=1\)

Vậy \(M=1\)

1 tháng 7 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM

10 tháng 12 2019

Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Không mất tính tổng quát, ta lấy \(a=-b\), ta có:

\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)

\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)

Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)

\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)

Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)

10 tháng 12 2019

Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.

27 tháng 1 2017

cái chỗ a+c+1 la "ac+c+1" nha, mình viết nhầm

27 tháng 1 2017

ta có: \(\frac{2013a^2bc}{ab+2013a+2013}\)\(\frac{2013.ab.ac}{ab+ab.ac+abc}\)\(\frac{2013.ab.ac}{ab.\left(ac+c+1\right)}\)\(\frac{2013ac}{ac+c+1}\)

\(\frac{ab^2c}{bc+b+2013}\)\(\frac{abc.b}{bc+b+abc}\)\(\frac{2013b}{b\left(ac+c+1\right)}\)\(\frac{2013}{ac+c+1}\)

\(\frac{abc^2}{ac+c+1}\)\(\frac{abc.c}{ac+c+1}\)\(\frac{2013c}{ac+c+1}\)

Cộng cả 3 phân thức cùng mẫu thức ta có phân thức cuối cùng là:

P=\(\frac{2013.\left(ac+c+1\right)}{ac+c+1}\)=2013