K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

Áp dụng bất đẳng thức : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Có thể chứng minh bằng biến đổi tương đương)

được: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(1)

Thay \(a+b=2-c\)và \(a^2+b^2=2-c^2\)vào (1) được: 

\(2\left(2-c^2\right)\ge\left(2-c\right)^2\Leftrightarrow4-2c^2\ge4-4c+c^2\Leftrightarrow3c^2-4c\le0\)

Giải ra được \(0\le c\le\frac{4}{3}\) 

Tương tự với a,b  ta suy ra được điều phải chứng minh.

24 tháng 5 2016

bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh

26 tháng 2 2016

toán lớp  thì ko biết

21 tháng 4 2017

Ta có: \(\hept{\begin{cases}a^2+b^2+1=2\left(a+b\right)\\c^2+d^2+36=12\left(c+d\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2+\left(b-1\right)^2=1\\\left(c-6\right)^2+\left(d-6\right)^2=36\end{cases}}\)

\(\Rightarrow\) Đường tròn tâm \(\hept{\begin{cases}I\left(1;1\right)\\R=1\end{cases}}\), đương tròn tâm \(\hept{\begin{cases}I'\left(6;6\right)\\R'=6\end{cases}}\)

Gọi \(\hept{\begin{cases}A\left(a;b\right)\in\left(I\right)\\B\left(c;d\right)\in\left(I'\right)\end{cases}}\)

\(\Rightarrow AB=\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)

Vì \(II'=\sqrt{25+25}=5\sqrt{2}>6+1=7=R+R'\)

Kẽ II' cắt đường tròn (I) và (I') tại M, N, P, Q.

Ta có: \(NP\le AB\le MQ\)

\(\Leftrightarrow II'-\left(R+R'\right)\le AB\le II'+\left(R+R'\right)\)

\(\Leftrightarrow5\sqrt{2}-7\le AB\le5\sqrt{2}+7\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)^3\le AB\le\left(\sqrt{2}+1\right)^3\)

\(\Rightarrow\left(\sqrt{2}-1\right)^6\le\left(a-c\right)^2+\left(b-d\right)^2\le\left(\sqrt{2}+1\right)^6\)

NV
10 tháng 5 2020

\(GT\Rightarrow\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

Ta có: \(\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{b^4}\ge4\sqrt[4]{\frac{1}{a^{12}b^4}}=\frac{4}{a^3b}\)

Tương tự: \(\frac{3}{b^4}+\frac{1}{c^4}\ge\frac{4}{b^3c}\) ; \(\frac{3}{c^4}+\frac{1}{a^4}\ge\frac{4}{c^3a}\)

\(\Rightarrow\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}\le\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)

\(VT=\frac{1}{a^3b+c^2+c^2+1}+\frac{1}{b^3c+a^2+a^2+1}+\frac{1}{c^3a+b^2+b^2+1}\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{2}{c^2}+1+\frac{1}{b^3c}+\frac{2}{a^2}+1+\frac{1}{c^3a}+\frac{2}{b^2}+1\right)\)

\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}+2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\right)\)

\(VT\le\frac{1}{16}\left(6+2\sqrt{3\left(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\right)}\right)=\frac{1}{16}\left(6+6\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

13 tháng 2 2018

Ta có BĐt cầnd chứng minh \(\Leftrightarrow\frac{\left(a+b\right)^2}{a^2+4}\le\frac{3}{2}\Leftrightarrow2\left(a+b\right)^2\le3\left(a^2+4\right)\)

<=>\(2\left(a^2+b^2+2ab\right)\le3\left(a^2+4\right)\Leftrightarrow2\left(4+2ab\right)\le12+3a^2\)

<=>\(4ab\le3a^2+4=4a^2+b^2\)

<=>\(0\le4a^2+b^2-4ab\Leftrightarrow0\le\left(2a-b\right)^2\left(LĐ\right)\)

=> BĐt cần chứng minh luôn đúng 

^_^