Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ \(M\in(O)\) với \(M\neq K\).
a) Ta có tứ giác AKBC nội tiếp nên \(\widehat{AKB}+\widehat{ACB}=180^o\Rightarrow\widehat{AKB}=\widehat{ACE}\). (1)
Tứ giác AMBK nội tiếp nên \(\widehat{AMK}=\widehat{ABK}\) mà \(\widehat{AMK}=\widehat{AEC}(\text{so le trong, KM//EC})\) nên \(\widehat{ABK}=\widehat{AEC}\). (2)
Từ (1), (2) suy ra \(\Delta ABK\sim\Delta AEC(g.g)\).
b) Theo câu a: \(\Delta ABK\sim\Delta AEC\Rightarrow \frac{AK}{AB}=\frac{AC}{AE};\widehat{BAK}=\widehat{EAC}\)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AK}{AC};\widehat{BAE}=\widehat{KAC}\Rightarrow\Delta ABE\sim\Delta AKC\left(c.g.c\right)\).
c) Ta có KM // BC nên \(\Delta ABK\sim\Delta AEC\sim\Delta AMF\)
\(\Rightarrow\dfrac{AK}{AF}=\dfrac{AB}{AM}\).
Từ đây dễ suy ra \(\Delta AFK\sim\Delta AMB(c.g.c)\).
A B C D E K M I H F
a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\)
Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.
Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.
b) Xét tam giác BEC và tam giác BHM có :
\(\widehat{BEC}=\widehat{BHM}=90^o\)
Góc B chung
\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)
Ta có \(BK^2=BD^2=BH.BC=BE.EM\) mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)
Vậy MK là tiếp tuyến của đường tròn tâm B.
c)
Gọi F là giao điểm của CE với đường tròn tâm B.
Do \(BE\perp KF\)nên MB là trung trực của FK.
\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.
\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)
Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)
Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.
Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)
Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.
\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)
Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)
\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)
\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)
Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH
A B C M O D E F I P Q T
1) Ta có 4 điểm B,O,C,M cùng thuộc đường tròn đường kính OM (^MBO = ^MCO = 900) (1)
Do MI // AB và MB tiếp xúc với (O) tại B nên ^CIM = ^CAB = ^CBM
=> 4 điểm B,I,C,M cùng thuộc một đường tròn (2)
Từ (1) và (2) suy ra 5 điểm M,B,O,I,C cùng thuộc một đường tròn (đpcm).
2) Theo câu a thì M,B,I,C cùng thuộc (OM), có BC giao IM tại F => FI.FM = FB.FC
Đường tròn (O) có dây BC giao DE tại F nên FB.FC = FD.FE
Do vậy FI.FM = FD.FE => \(\frac{FI}{FE}=\frac{FD}{FM}\) (đpcm).
3) Điểm I thuộc đường tròn (OM) => ^OIM = 900 hay ^QIM = 900
Dễ thấy FQ.FT = FB.FC = FI.FM, suy ra tứ giác QMTI nội tiếp => ^QTM = ^QIM = 900
=> \(\Delta\)QTM vuông tại T. Theo ĐL Pytagoras: \(TQ^2+TM^2=QM^2\)
Vậy thì \(\frac{TQ^2+TM^2}{MQ^2}=1.\)
a/tacó: góc DMC là góc nội tiếp chắn nửa đường tròn đường kính DC
=> góc DMC =90o
tứ giác CKFM có: \(\widehat{CKF}+\widehat{CMF}=180^o\)
mà 2 góc này ở vị trí đối nhau
=> tứ giác CKFM nội tiếp đường tròn (đpcm)
b/theo phần a ta có: tứ giác CKFM nội tiếp đường tròn
=> \(\widehat{KCM}+\widehat{KFM}=180^o\)\(\Rightarrow\widehat{KCM}=180^o-\widehat{KFM}\left(1\right)\)
Ta lại có :\(\widehat{DFK}+\widehat{KFM}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{DFK}=180^o-\widehat{KFM}\left(2\right)\)
Từ (1) và (2) ta có: \(\widehat{DFK}=\widehat{KCM}\)
xét tam giác DFK và tam giác KCE có:
\(\widehat{DFK}=\widehat{KCE}\left(cmt\right)\)
\(\widehat{DKF}=\widehat{ÈKC}\left(=90^o\right)\)
\(\Rightarrow\Delta DKF~\Delta EKC\left(g-g\right)\)
\(\Rightarrow\frac{KD}{KE}=\frac{KE}{KC}\Rightarrow KD.KC=KE.KF\left(đpcm\right)\)
c/ta có: \(\widehat{DMI}=\widehat{DCM}\)(vì cùng chắn cung DM nhỏ)
mà \(\widehat{DCM}=\widehat{DFK}\) (theo phần a)
do đó : \(\widehat{DMI}=\widehat{DFK}\) mà \(\widehat{DFK}=\widehat{IFM}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{IF̀M}=\widehat{FMI}\)
\(\Rightarrow\Delta IFM\) cân tại I
=> IF=IM(*)
\(\Delta EFM\) vuông tại M (vì MI là tiếp tuyến của đường tròn tâm O tại tiếp điểm M )có : \(\widehat{FEM}+\widehat{EFM}=90^o\left(3\right)\)
\(\widehat{FMI}+\widehat{IME}=90^o\)(4)
từ (3) và (4) ta có: \(\widehat{IEM}=\widehat{IME}\) (vì \(\widehat{EFM}=\widehat{FMI}\))
=> tam giác IME cân tại I
\(\Rightarrow IE=IM\)(2*)
Từ (*) và (2*) ta có: IF=IE(đpcm)