Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
a) Xét ΔMAB và ΔMEC có
MA=ME(gt)
ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMEC(c-g-c)
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: ΔMBA=ΔMCE
=>góc MBA=góc MCE
mà hai góc này so le trong
nên AB//CE
c: ΔMBA=ΔMCE
=>BA=CE
mà BA<CA
nên CE<CA
=>góc CAE<góc CEA
mà góc CEA=góc BAM
nên góc CAM<góc BAM
A B C M E
a.
MB = MC (AM là trung tuyến)
\(\widehat{AMB}\) = \(\widehat{EMC}\) (Góc đối)
MA = ME (Giả thuyết)
=> Tam giác ABM = Tam giác ECM (Cạnh - góc - cạnh)
b.
Tam giác ABM = Tam giác ECM
ABM là tam giác vuông tại B
=> Tam giác ECM vuông tại C
=> EC vuông góc BC
Mà AB vuông góc BC
=> EC song song AB
c.
Ta có
\(\widehat{BAM}\) = 180o - 90o - \(\widehat{AMB}\)(1)
\(\widehat{MAC}\) = 180o - \(\widehat{ACM}\) - \(\widehat{AMC}\)
=> \(\widehat{MAC}\) = 180 - \(\widehat{ACM}\) - (180o - \(\widehat{AMB}\))
=> \(\widehat{MAC}\) = \(\widehat{ACM}\) - \(\widehat{AMB}\)(2)
(1) và (2) => \(\widehat{BAM}\) > \(\widehat{MAC}\)(Vì góc \(\widehat{ACM}\) < 90o)
a) \(\Delta ABM\)và \(\Delta ECM\)có: BM = MC (M là trung điểm của BC)
\(\widehat{AMB}=\widehat{CME}\)(đối đỉnh)
AM = ME (gt)
=> \(\Delta ABM\)= \(\Delta ECM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta ECM\)(cm câu a)
=> AB = EC (hai cạnh tương ứng) (đpcm)
c/ Dựng MI ́ là tia đối của MI
Ta có: \(\Delta AMB=\Delta ECM\)câu a
\(\Rightarrow\widehat{BAM}=\widehat{MEC}\)góc t.ứng
Trong tam giác AMI có: \(\widehat{IAM}+\widehat{AMI}+\widehat{MIA}=180^0\)
Trong tam giác EMI có: \(\widehat{ÍEM}+\widehat{AMÍ}+\widehat{MÍA}=180^0\)
Mà góc IAM = góc I ́EM cmt, Góc AMI = góc AMI ́đối đỉnh. nên góc MIA = góc MI ́A
hay \(\widehat{MIA}=\widehat{MÍA}=90^0\)
Vậy \(MÍ\)vuông góc vs EC hay MI vuông góc vs EC
P/s: chắc đúng