Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này chỉ chứng minh được với điều kiện đó là tam giác vuông với 2 cạnh của góc vuông là a & b.
Lúc đó ta sẽ có:
a^2 + b^2 = c^2
Suy ra:
a^2 + b^2 - c^2 = 0 (1)
Đề bài là:
M = 4a^2b^2 – ( a^2+ b^2 – c^2)
Thay (1) vào:
M = 4a^2b^2 - 0
M = 4a^2b^2
M > 0 (hay M luôn dương).
Ta có \(a^2-b^2-c^2-2bc\)
\(=a^2-\left(b^2+2bc+c^2\right)\)
\(=a^2-\left(b+c\right)^2\)
Ta có \(a^2\ge0;\left(b+c\right)^2\ge0\)nên \(a^2-\left(b+c\right)^2\ge0\)
Khi đó hiệu trên luôn dương
Vậy....
a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng :P=4b2c2-(b2+c2-a2)2 luôn có giá trị dương
Cho a,b,c là độ dài ba cạnh của 1 tam giác. Chứng minh rằng: 4b2c2-(b2+c2-a2)2 luôn luôn thuộc dương
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
ta có 4a2b2c2=(2bc)2
=(2bc)2-(b2+c2-a2)
dùng hằng đăng thức thứ 3 + hằng đẳng thức thứ 1 ta được
=[-(b-c)2+a2].[(b+c)2-a2]
<=>[a2-(b-c)2].[(b+c)2-a2]
=(a+c-b).(a+b-c).(b+c-a).(b+c+a)
dùng bất đẳng thức tam giác bạn tự kết luận nha
Bài này chỉ chứng minh được khi 2 tam giác vuông với 2 cạnh là a và b
Ta có :
\(c^2+b^2=c^2\)
\(\Rightarrow\)\(a^2+b^2-c^2=0\) ( 1 )
Thay 1 vào :
\(4a^2b^2-0\)
\(=4a^2b^2\)
\(\Rightarrow\)
Vì a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)
\(\Leftrightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)
\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)
Tui đang lười
Làm theo cái này
Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath
Vào câu hỏi tương tự cũng được. Ohe?