Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng không thế \(\sqrt{a^{2016}}\) thì viết luôn là \(a^{1008}\)cho rồi
Fix: \(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge a^{2015}+b^{2015}+c^{2015}\)
WLOG \(a\ge b\ge c\Rightarrow\frac{a}{b+c-a}\ge\frac{b}{c+a-b}\ge\frac{c}{a+b-c}\)
Thật vậy \(\frac{a}{b+c-a}-\frac{b}{c+a-b}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(a+b+c\right)}{\left(b+c-a\right)\left(c+a-b\right)}\ge0\left(\text{đúng vì}\hept{\begin{cases}a\ge b\\\text{a,b,c là 3 cạnh tam giác}\end{cases}}\right)\)
Tương tự cho các BĐT còn lại sau đó áp dụng BĐT Chebyshev:
\(VT=\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\)
\(=a^{2015}\cdot\frac{a}{b+c-a}+b^{2015}\cdot\frac{b}{c+a-b}+c^{2015}\cdot\frac{c}{a+b-c}\)
\(\ge\frac{1}{3}\left(a^{2015}+b^{2015}+c^{2015}\right)\left(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\right)\)
Mà ta đã biết \(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\) (Easy to prove)
\(\Rightarrow VT\ge\frac{1}{3}\cdot3\cdot\left(a^{2015}+b^{2015}+c^{2015}\right)=a^{2015}+b^{2015}+c^{2015}=VP\)
Đặt p là nửa chu vi tam giác => \(p=\frac{a+b+c}{2}\)
=>\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}=\frac{1}{2}.\left(\frac{1}{p-c}+\frac{1}{p-a}+\frac{1}{p-b}\right)\)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(CM bằng biến đổi tương đương)
được : \(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{2p-a-c}=\frac{4}{b}\)
Tương tự : \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{c}\)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hay \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
Đặt \(\hept{\begin{cases}a=y+z\\b=x+z\\c=x+y\end{cases}}\)
Khi đó, \(x,y,z\) dương và ta cần c/m:
\(\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)\)
\(\ge8Σ\left(y-z\right)\left(2x+y+z\right)\left(2y+x+z\right)\)
Hay \(Σ\left(2x^3+15x^2y-x^2z+\frac{16}{3}xyz\right)\ge0\)
Nó hiển nhiên đúng vì \(x^3+y^3+z^3\ge x^2z+y^2x+z^2y\) theo BĐT Rearrangement
Bài 1:Với a,b,c,d dương
Ta có: \(\frac{a}{a+b+c+d}<\frac{a}{a+b+c}<\frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}<\frac{b}{b+c+d}<\frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}<\frac{c}{a+c+d}<\frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}<\frac{d}{a+b+d}<\frac{d+b}{a+b+c+d}\)
Cộng vế theo vế 4 bất đẳng thức tên ta có:
\(\) 1< A <2 (đpcm)
Bài 2: a,b,c là độ dài 3 cạnh của tam giác.ta có:
\(\frac{a}{b+c}<\frac{2a}{a+b+c}\)
\(\frac{b}{c+a}<\frac{2b}{a+b+c}\)
\(\frac{c}{a+b}<\frac{2c}{a+b+c}\)
Cộng 3 bất đẳng thức trên vế theo vế ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)
A B C D E x
Qui ước: Ax là p.g của A , đường vuông góc BD,CE
Ta có: \(\sin\frac{A}{2}=\frac{BD}{AB}=\frac{CE}{AC}=\frac{BD+CE}{AB+CA}\)(t/c dãy ts = nhau)
dễ dàng chứng minh \(BD+CE\le BC\)nên ta có đpcm
Dấu = xảy ra khi tam giác ABC cân ở A
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
-> A>1
để cm A<2, ta đi chứng minh bđt phụ
*Nếu \(\frac{a}{b}<1\) thì \(\frac{a+n}{b+n}>\frac{a}{b}\)với n>=0
\(\frac{a+n}{b+n}>\frac{a}{b}\Leftrightarrow ab+bn>ab+an\Leftrightarrow bn>an\Leftrightarrow b>a\)là bđt nên bđt phụ đc chứng minh
A/d bđt phụ ta có:
\(\frac{a}{b+c}<1\)(vì là độ dài 3 cạnh của 1 tam giác)\(\Rightarrow\frac{a+a}{a+b+c}>\frac{a}{b+c}\)
Tương tự ta có \(\frac{2b}{a+b+c}>\frac{b}{a+c};\frac{2c}{a+b+c}>\frac{c}{a+b}\)
Cộng vế với vế ta được:
\(\frac{2a+2b+2c}{a+b+c}>A\Rightarrow2>a\)
Đặt \(\hept{\begin{cases}a=y+z\\b=x+z\\c=x+y\end{cases}}\) suy ra x,y,z dương và cần cm
\(\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)\)
\(\ge8Σ_{cyc}\left(y-z\right)\left(2x+y+z\right)\left(2y+x+z\right)\)
\(\LeftrightarrowΣ_{cyc}\left(2x^3+15x^2y-x^2z+\frac{16}{3}xyz\right)\ge0\)
Đúng theo BĐT Rearrangement