Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
mũ 2 và mũ 3 nha bạn. cả 2 cái cách làm tương tự nhau.nếu bạn ko làm đc mũ 3, bn có thể làm mũ 2 chi mình xem đc ko
Do \(a,b,c\in\left[-1;2\right]\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2\le a+2\)
Tương tự:
\(b^2\le b+2;c^2\le c+2\Rightarrow a^2+b^2+c^2\le a+b+c+6\)
\(\Rightarrow a+b+c\ge0\) vì \(a^2+b^2+c^2=6\)
Trình bày khác Cool Kid xíu!
\(a+b+c=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)+\Sigma_{cyc}\left(a^2-2\right)\)
\(=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)\ge0\) vì \(a,b,c\in\left[-1;2\right]\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và các hoán vị.
Đặt a+1=x; b+1=y; c+1=z; đề bài trở thành ''Cho x,y,z\(\in\left(0;3\right)\)thỏa mãn x+y+z=3 cm \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\le6\)''
Bất đẳng thức cần chứng minh tương đương : \(x^2+y^2+z^2-2\left(x+y+z\right)+3\le6\)\(\Leftrightarrow x^2+y^2+z^2\le3+2\left(x+y+z\right)=9\)(1) mà \(x+y+z=3\Rightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)vậy (1)\(\Leftrightarrow9-2\left(xy+yz+xz\right)\le9\Leftrightarrow-2\left(xy+yz+xz\right)\le0\)(2) mà x,y,z thuộc (0;3) => (2) đúng mà các phép biến đổi trên là tương đương nên ta suy ra đpcm
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
\(\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{6}{2}=3\)(BĐT \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(-1\le a;b;c\le2\)
\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-a-2\le0\)
\(\Rightarrow a^2-2\le a\)
Tương tự ta có: \(b^2-2\le b\) ; \(c^2-2\le c\)
\(\Rightarrow a+b+c\ge a^2+b^2+c^2-6=0\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và cách hoán vị