Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Vậy GTNN của \(R\) là \(9\) khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt ~
Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)
LG
Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)
\(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)
Khi đó :\(B=a+b+c+\frac{1}{abc}\)
\(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)
\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)
\(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)
Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Vậy .........
2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)
Áp dụng BĐT AM-GM ta có:
\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)
\(A\ge a+b+c-\frac{6}{2}\)
\(A\ge6-3\)
\(A\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)
\(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)
\(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)
Lấy \(\left(1\right)-\left(3\right)\)ta có:
\(2a-2c=c+b-a-b=c-a\)
\(\Rightarrow2a-2c-c+a=0\)
\(\Leftrightarrow3.\left(a-c\right)=0\)
\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)
Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)
\(\Rightarrow a=b=c=2\)
Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)
\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*
Đặt \(x=2a\)và \(y=2b\)suy ra \(\hept{\begin{cases}x>0\\y>0\\x+y\le2\end{cases}}\)
Suy ra : \(A=\frac{x}{y+2}+\frac{y}{x+2}+\frac{2}{x+y}\)
\(\Rightarrow A=\frac{x^2}{xy+2x}+\frac{y^2}{xy+2y}+\frac{2}{x+y}\)
\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(xy+x+y\right)}+\frac{2}{x+y}\)
\(\Rightarrow A\ge\frac{\left(x+y\right)^2}{2\left(\frac{\left(x+y\right)^2}{4}+\left(x+y\right)\right)}+\frac{2}{x+y}\)
Đặt \(t=x+y\)( \(0< t\le2\))
Suy ra :
\(\Rightarrow A\ge\frac{t^2}{\frac{t^2}{2}+2t}+\frac{2}{t}\)
\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{2}{t}\)
\(\Rightarrow A\ge\frac{2t}{t+4}+\frac{4}{3}.\frac{1}{t}+\frac{2}{3}.\frac{1}{t}\)
\(\Rightarrow A\ge2\sqrt{\frac{2t}{t+4}.\frac{4}{3}.\frac{1}{t}}+\frac{2}{3}.\frac{1}{t}\)
\(\Rightarrow A\ge2\sqrt{\frac{8}{3\left(t+4\right)}}+\frac{2}{3}.\frac{1}{t}\)
\(\Rightarrow A\ge2\sqrt{\frac{8}{3.\left(2+4\right)}}+\frac{2}{3}.\frac{1}{2}=\frac{5}{3}\)
"=" xảy ra khi \(x=y=\frac{1}{2}\)
\(A=\dfrac{a}{b+1}+\dfrac{b}{a+1}+\dfrac{1}{a+b}\)
\(\ge\dfrac{a}{a+2b}+\dfrac{b}{2a+b}+\dfrac{1}{a+b}\)
\(=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{2ab+b^2}+\dfrac{1}{a+b}\)
\(\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+2ab}+\dfrac{1}{a+b}\)
\(\ge\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+\dfrac{\left(a+b\right)^2}{2}}+\dfrac{1}{a+b}\)
\(=\dfrac{\left(a+b\right)^2}{\dfrac{3}{2}\left(a+b\right)^2}+\dfrac{1}{a+b}=\dfrac{2}{3}+\dfrac{1}{a+b}\ge\dfrac{2}{3}+1=\dfrac{5}{3}\)
\("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Áp dụng bất đẳng thức Cô-si cho 3 số không âm ta có: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\sqrt[3]{abc}\le a+b+c=1\Rightarrow\sqrt[3]{abc}\le\dfrac{1}{3}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}=\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\dfrac{1}{3}}=9\)
Dấu "=" xảy ra <=> a = b = c = \(\dfrac{1}{3}\)
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
Dự đoán xảy ra cực trị khi a = b = c =2. Khi đó P =\(\frac{3\sqrt{2}}{4}\). Ta sẽ chứng minh đó là MAX của P
Ta có: \(\left(\frac{a+b+c}{3}\right)^3-\left(a+b+c\right)\ge abc-\left(a+b+c\right)=2\)
Đặt a + b +c = t>0 suy ra \(\frac{t^3-27t}{27}\ge2\Leftrightarrow t^3-27t\ge54\Leftrightarrow t^3-27t-54\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}t\ge6\\t=-3\left(L\right)\end{cases}}\). Do vậy \(t\ge6\) (em làm tắt xiu nhé,dài quá)
\(P=\Sigma_{cyc}\frac{2}{\sqrt{2}.\sqrt{2\left(a^2+b^2\right)}}\le\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Giờ đi chứng minh \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{3}{4}\)
Em cần suy ra nghĩ tiếp:(
Lời giải:
Đặt \(P=\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}\)
\(P+3=\frac{a+b+c+1}{b+c+1}+\frac{b+a+c+1}{a+c+1}+\frac{c+b+a+1}{b+a+1}\)
\(=(a+b+c+1)\left(\frac{1}{b+c+1}+\frac{1}{a+c+1}+\frac{1}{b+a+1}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(P+3\geq (a+b+c+1).\frac{9}{b+c+1+a+c+1+b+a+1}=\frac{9(a+b+c+1)}{2(a+b+c+1)+1}\)
Đặt \(a+b+c+1=t\). Vì \(a,b,c\geq \frac{1}{2}\Rightarrow t\geq \frac{5}{2}\)
Khi đó:
\(\frac{9(a+b+c+1)}{2(a+b+c+1)+1}=\frac{9t}{2t+1}=\frac{9}{2}-\frac{9}{2(2t+1)}\geq \frac{9}{2}-\frac{9}{2.(2.\frac{5}{2}+1)}=\frac{15}{4}\)
\(\Rightarrow P+3\geq \frac{9(a+b+c+1)}{2(a+b+c+1)+1}\geq \frac{15}{4}\)
\(\Rightarrow P\ge \frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)
BĐT Cauchy - Schwarz như thế nào ạ ?