Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}<\frac{a}{a+b}\)
Tương tự, \(\frac{b}{a+b+c}<\frac{b}{b+c}\); \(\frac{c}{a+b+c}<\frac{c}{c+a}\)
=> \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
=> \(\frac{a+b+c}{a+b+c}=1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) (*)
+ ta có: Nếu phân số \(\frac{x}{y}<1\) thì \(\frac{x}{y}<\frac{x+m}{y+m}\)
Áp dụng với \(\frac{a}{a+b}<1;\frac{b}{b+c}<1;\frac{c}{c+a}<1\) ta có:
\(\frac{a}{a+b}<\frac{a+c}{a+b+c};\frac{b}{b+c}<\frac{b+a}{b+c+a};\frac{c}{c+a}<\frac{c+b}{c+a+b}\). cộng từng vế ta được
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{b+c+a} +\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)
Từ (*)(**) => \(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)
Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên
=>đpcm
ta có 1<M<2
bài olamf trong câu hỏi tương tự có đó , mình đã đăng 1 câu hỏi tương tự như thế
Ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\) (1)
Ta có:
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M< 2\) (2)
Từ (1) và (2) => 1 < M < 2
=> M không phải là một số nguyên dương (đpcm)
\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương
Lời giải:
Với $a,b,c>0$ ta có:
$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$
Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$
$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$
Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$
Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$
Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.
M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0
M=1+b+1+c+1+a=3+a,b,c
M là số nguyên
Ta có a/b+c+b/a+c+c/a+b > a/a+b+c+b/b+c+a+c/b+c+a=a+b+c/a+b+c=1
=>M>1
Lại có M=(1-b/a+b)+(1- c/b+c)+(1-c/a+c)<3-(b/a+b+c+c/b+c+a+a/c+a+b)=3-1=2
=>M < 2
do đo 1<M<2=>đpcm
M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0
M=1+b+1+c+1+a=3+a,b,c
M là số nguyên
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM