Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Bunhiacopski ta có
\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)
Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.
Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)
\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)
Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)
\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)
Khi đó bất đẳng thức cần chứng minh trở thành
\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)
hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)
Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là
\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)
Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được
\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)
Áp dụng tương tự ta được
\(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)
hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là
\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)
Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)
\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)
hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng
Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)
1, Ta có \(abc=a+b+c+2\ge4\sqrt[4]{abc.2}\)
<=>\(abc\ge8\)
BĐT <=> \(ab+bc+ac\ge2\left(abc-2\right)\)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2-\frac{2}{abc}\)
Áp dụng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)
Khi đó cần CM \(\frac{3}{\sqrt[3]{abc}}\ge2-\frac{2}{abc}\)
Đặt \(\frac{1}{\sqrt[3]{abc}}=x\)=> \(0< x\le2\)
BĐT<=> \(\frac{3}{x}\ge2-\frac{2}{x^3}\)
<=>\(\frac{2}{x^3}+\frac{3}{x}-2\ge0\)
<=> \(2+3x^2-2x^3\ge0\)
<=> \(\left(2-x\right)\left(2x^2+x+1\right)\ge0\)(luôn đúng với \(0< x\le2\))
=> BĐT được CM
Dấu bằng xảy ra khi a=b=c=2
2. BĐT <=> \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\le\frac{3}{2}\)
Đặt \(a=\frac{y+z}{x};b=\frac{x+z}{y}\left(x.y,z>0\right)\)
=> \(c=\frac{a+b+2}{ab-1}=\frac{\frac{y+z}{x}+\frac{x+z}{y}+2}{\frac{\left(y+z\right)\left(x+z\right)}{xy}-1}=\frac{x^2+y^2+z\left(x+y\right)+2xy}{z\left(x+y+z\right)}=\frac{\left(x+y\right)^2+z\left(x+y\right)}{z\left(x+y+z\right)}=\frac{x+y}{z}\)
Khi đó BĐT <=> \(\frac{1}{\sqrt{\frac{\left(y+z\right)\left(x+z\right)}{xy}}}+\frac{1}{\sqrt{\frac{\left(x+z\right)\left(x+y\right)}{yz}}}+\frac{1}{\sqrt{\frac{\left(x+y\right)\left(y+z\right)}{zx}}}\le\frac{3}{2}\)
<=> \(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(y+z\right)\left(x+y\right)}}\le\frac{3}{2}\)
Áp dụng cosi ta có
\(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)
Tương tự=> \(VT\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{y}{x+y}\right)=\frac{3}{2}\)(ĐPCM)
Dấu bằng xảy ra khi \(x=y=z\)=> \(a=b=c=2\)
Ta có: \(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{abc}{abc+a^2\left(a+b+c\right)}}=\sqrt{\frac{bc}{ac+a^2+ab+ac}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si được
\(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
Thiết lập các bđt còn lại cho 2 số hạng còn lại rồi cộng vào được đpcm
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Ta có :
\(\sqrt{a +b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
<=> \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\)
<=> \(2\left(a+b+c\right)+2\sqrt{a+b}\sqrt{b+c}+2\sqrt{c+a}\sqrt{b+c}+2\sqrt{b+c}\sqrt{c+a}\le6\)
<=> \(\sqrt{a+b}\sqrt{b+c}+\sqrt{c+a}\sqrt{b+c}+\sqrt{b+c}\sqrt{c+a}\le2\) (a)
Đặt \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\Rightarrow x+y+z=2\left(a+b+c\right)=2\)
Suy ra
(a) <=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le2\)
Ta có bất đẳng thức phụ sau : Với x,y,z là các số dương thì
\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\) (*)
Chứng minh : Nhân 2 cho 2 vế
(*) <=> \(2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\le2x+2y+2z\)
<=> \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Vậy \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)
Suy ra \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z=2\)
Vậy Với a + b + c = 1 thì \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Đẳng thức xảy ra <=> x = b = c = \(\frac{1}{3}\)