Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
Nếu đề đúng như thế thì chứng minh như sau:
\(VT=\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\)
Ta có: \(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{2a}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{b}\) ; \(\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{2}{c}\)
Cộng vế với vế:
\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi \(a=b=c\)
áp dụng bô đề \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{1}{m-2a}+\frac{1}{m-2b}\ge\frac{4}{\left(m-2a\right)+\left(m-2b\right)}=\frac{4}{2\left(m-a-b\right)}=\frac{2}{c}\)
tương tư \(\frac{1}{m-2b}+\frac{1}{m-2c}\ge\frac{2}{a}\)
\(\frac{1}{m-2a}+\frac{1}{m-2c}\ge\frac{2}{b}\)
cong các bdt tren ta co \(2\left(\frac{1}{m-2a}+\frac{1}{m-2b}+\frac{1}{m-2c}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow dpcm\)
đặt b+c-a=x, a+c-b=y,a+b-c=z\(\Rightarrow x+y=2c,y+z=2a,x+z=2b\)
pt trở thành \(\frac{y+z}{x}+\frac{x+z}{y}+\frac{y+x}{z}=\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\) \(\ge2+2+2=6\)
dau = xay ra\(\Leftrightarrow x=y=zhaya=b=c\)
\(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{b+a-c}\)
\(=\frac{2a^2}{ab+ac-a^2}+\frac{2b^2}{bc+ba-b^2}+\frac{2c^2}{cb+ca-c^2}\)
\(\ge\frac{2\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-a^2-b^2-c^2}\)
\(\ge\frac{2\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+a^2+b^2+c^2-a^2-b^2-c^2}=6\)
Dấu = xảy ra khi \(a=b=c\)
1 bài BĐT rất hay !!!!!!
BẠN PHÁ TOANG RA HẾT NHÁ SAU ĐÓ THÌ ĐƯỢC CÁI NÀY :33333
\(S=15\left(a^3+b^3+c^3\right)+6\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)-72abc\)
\(S=9\left(a^3+b^3+c^3\right)+6\left(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\right)-72abc\)
\(S=9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-72abc\)
TA ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)
=> \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\)
=> \(72abc\le8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(-72abc\ge-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}\left(a+b+c\right)\)
TA LẠI TIẾP TỤC ÁP DỤNG BĐT SAU: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow\left(a+b+c\right)^2\le\frac{1}{3}\Rightarrow a+b+c\le\sqrt{\frac{1}{3}}\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}.\sqrt{\frac{1}{3}}\)
TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:
\(a^3+a^3+\left(\sqrt{\frac{1}{27}}\right)^3\ge3a^2.\sqrt{\frac{1}{27}}\)
ÁP DỤNG TƯƠNG TỰ VỚI 2 BIẾN b; c ta sẽ được 1 BĐT như sau:
=> \(2\left(a^3+b^3+c^3\right)+3\left(\sqrt{\frac{1}{27}}\right)^3\ge\frac{3}{\sqrt{27}}\left(a^2+b^2+c^2\right)=\frac{3}{\sqrt{27}}.\left(\frac{1}{9}\right)=\frac{\sqrt{3}}{27}\)
=> \(a^3+b^3+c^3\ge\frac{\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}\)
=> \(S\ge\frac{9\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}-\frac{2}{9}.\sqrt{\frac{1}{3}}\)
=> \(S\ge\frac{1}{\sqrt{3}}\)
VẬY TA CÓ ĐPCM.
DẤU "=" XẢY RA <=> \(a=b=c=\sqrt{\frac{1}{27}}\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Áp dụng bất đẳng thức cơ bản dạng\(\left(x+y\right)^2\ge4xy\), ta được: \(\left(a+2b\right)^2=\left(\frac{2a+b}{2}+\frac{3b}{2}\right)^2\ge4.\frac{2a+b}{2}.\frac{3b}{2}=3b\left(2a+b\right)\)
\(\Rightarrow\frac{2a+b}{a+2b}\le\frac{a+2b}{3b}\Rightarrow\frac{2a+b}{a\left(a+2b\right)}\le\frac{1}{3}\left(\frac{2}{a}+\frac{1}{b}\right)\)
Tương tự, ta có: \(\frac{2b+c}{b\left(b+2c\right)}\le\frac{1}{3}\left(\frac{2}{b}+\frac{1}{c}\right)\); \(\frac{2c+a}{c\left(c+2a\right)}\le\frac{1}{3}\left(\frac{2}{c}+\frac{1}{a}\right)\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(c+2a\right)}\)
Đẳng thức xảy ra khi a = b = c
\(L.H.S\left(VT\right)\ge\frac{\left[2\left(a+b+c\right)-3\right]^2}{\Sigma\left(2a-1\right)\left(1+bc\right)}=\frac{9}{\Sigma\left(2a-1\right)\left(1+bc\right)}\).
Như vậy ta cần chứng minh:
\(\Sigma\left(2a-1\right)\left(1+bc\right)\le6\)
\(\Leftrightarrow\Sigma\left(2a-1\right)\left(1+bc\right)\le\frac{2\left(a+b+c\right)^3}{9}\)
\(\Leftrightarrow9\Sigma\left(2a-1\right)\left(1+bc\right)\le2\left(a+b+c\right)^3\)
\(\Leftrightarrow2\Sigma a^3+6.\Sigma ab\left(a+b\right)+9\Sigma ab+27-18\Sigma a-42abc\ge0\)
Đặt \(a+b+c=p=3;ab+bc+ca=q>\frac{3}{4};abc=r>\frac{1}{8}\). Cần chứng minh:
\(2\left(p^3-3pq+3r\right)+6\left(pq-3r\right)+9q+27-18p-42r\ge0\)
\(\Leftrightarrow\left(2p^3-54r\right)+9q-18p+27\ge0\)
\(\Leftrightarrow2\left(p^3-27r\right)+9\left(q-\frac{p^2}{3}\right)\ge0\)
\(\Leftrightarrow2\left[\left(a+b+c\right)^3-27abc\right]-3\left(\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right)\ge0\)
Bây giờ thì dùng sos nào:
Chú ý các đẳng thức: \(\left(a+b+c\right)^3-27abc=\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2\)
\(\left(a+b+c\right)^2-3\left(ab+bc+ca\right)=\Sigma\frac{1}{2}\left(a-b\right)^2\)
Như vậy ta chỉ cần chứng minh:
\(\Sigma\left(a+b+7c\right)\left(a-b\right)^2-\Sigma\frac{3}{2}\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\Sigma\left(a-b\right)^2\left(a+b+7c-\frac{3}{2}\right)\ge0\)
Và BĐT này là đúng bởi vì: \(a+b+7c-\frac{3}{2}=6c+\frac{3}{2}>0\) rồi tương tự các cái kia:v
Ta có đpcm.
P/s: Em có tính nhầm chỗ nào ko nhỉ:)) nếu ko thì em rất hóng có gp:D
\(\frac{1}{m-2a}+\frac{1}{m-2b}+\frac{1}{m-2c}=\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\)
áp dụng bđt cô si ta có:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{4}{c+a-b+a+b-c}=\frac{4}{2a}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\Rightarrow2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow\frac{1}{m-2a}+\frac{1}{m-2b}+\frac{1}{m-2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c