K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

=>\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{b+c+a}{a}=\frac{c+a+b}{b}\)

=> a =b= c

=> \(P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

16 tháng 3 2017

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

9 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (1)

Xét 2 trường hợp:

  • TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\)

\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)

\(P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)

  • TH2: a + b + c \(\ne\) 0

Từ (1) \(\Rightarrow\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)

\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)

 

9 tháng 11 2016

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1

=>\(\frac{a+b-c}{c}=1\)

a+b-c=c

2c=a+b

=>\(\frac{b+c-a}{a}=1\)

b+c-a=a

2a=b+c

=>\(\frac{c+a-b}{b}=1\)

c+a-b=b

=>c+a=2b

ta co \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{c+b}{b}\right)\)

=\(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)

Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\left(1\right)\)  Áp dụng t/c dãy tỉ số bằng nhau, ta có : 

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c-b}{c+a+b}\)

\(=\frac{\left(a+a-a\right)+\left(b+b-b\right)+\left(c+c-c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow a=b=c\)

 \(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)+\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(\)\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=2^3=8\)

Vậy \(B=8\)

áp dụng tính chất dãy tỉ số bằng nhau có

\(\frac{a+b-c}{c}\)=\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1

=>\(\frac{a+b-c}{c}\)=1=>a+b-c=c=>a+b=2c

tương tự ta được b+c=2a, c+a=2b

rồi bạn thay vào B là xong